Multiscale unfolding of real networks by geometric renormalization


Abstract in English

Multiple scales coexist in complex networks. However, the small world property makes them strongly entangled. This turns the elucidation of length scales and symmetries a defiant challenge. Here, we define a geometric renormalization group for complex networks and use the technique to investigate networks as viewed at different scales. We find that real networks embedded in a hidden metric space show geometric scaling, in agreement with the renormalizability of the underlying geometric model. This allows us to unfold real scale-free networks in a self-similar multilayer shell which unveils the coexisting scales and their interplay. The multiscale unfolding offers a basis for a new approach to explore critical phenomena and universality in complex networks, and affords us immediate practical applications, like high-fidelity smaller-scale replicas of large networks and a multiscale navigation protocol in hyperbolic space which boosts the success of single-lay

Download