No Arabic abstract
Recent advances in microelectromechanical systems often require multifunctional materials, which are designed so as to optimize more than one property. Using density functional theory calculations for alloyed nitride systems, we illustrate how co-alloying a piezoelectric material (AlN) with different nitrides helps tune both its piezoelectric and mechanical properties simultaneously. Wurtzite AlN-YN alloys display increased piezoelectric response with YN concentration, accompanied by mechanical softening along the crystallographic c direction. Both effects increase the electromechanical coupling coefficients relevant for transducers and actuators. Resonator applications, however, require superior stiffness, thus leading to the need to decouple the increased piezoelectric response from a softened lattice. We show that co-alloying of AlN with YN and BN results in improved elastic properties while retaining most of the piezoelectric enhancements from YN alloying. This finding may lead to new avenues for tuning the design properties of piezoelectrics through composition-property maps. Keywords: piezoelectricity, electromechanical coupling, density functional theory, co-alloying
Since AlN has emerged as an important piezoelectric material for a wide variety of applications, efforts have been made to increase its piezoelectric response via alloying with transition metals that can substitute for Al in the wurtzite lattice. Herein, we report density functional theory calculations of structure and properties of the Cr-AlN system for Cr concentrations ranging past the wurtzite-rocksalt transition point. By studying the different contributions to the longitudinal piezoelectric coefficient, we propose that the physical origin of the enhanced piezoelectricity in Cr$_x$Al$_{1-x}$N alloys is the increase of the internal parameter $u$ of the wurtzite structure upon substitution of Al with the larger Cr ions. Among a set of wurtzite-structured materials, we have found that Cr-AlN has the most sensitive piezoelectric coefficient with respect to alloying concentration. Based on these results, we propose that Cr-AlN is a viable piezoelectric material whose properties can be tuned via Cr composition; we support this proposal by combinatorial synthesis experiments, which show that Cr can be incorporated in the AlN lattice up to 30% before a detectable transition to rocksalt occurs. At this Cr content, the piezoelectric modulus $d_{33}$ is approximately four times larger than that of pure AlN. This finding, combined with the relative ease of synthesis, may propel Cr-AlN as the prime piezoelectric material for applications such as resonators and acoustic wave generators.
We study the effect of Zn alloying on the hydrogen desorption properties of Mg(BH$_4$)$_2$ using $it{ab initio}$ simulations. In particular, we investigate formation/reaction enthalpies/entropies for a number of compounds and reactions at a wide range of temperatures and Zn concentrations in Mg$_{1-x}$Zn$_x$(BH$_4$)$_2$. Our results show that the thermodynamic stability of the resulting material can be significantly lowered through Zn alloying. We find that e.g. the solid solution Mg$_{2/3}$Zn$_{1/3}$(BH$_4$)$_2$ has a reaction enthalpy for the complete hydrogen desorption of only 25.3 kJ/mol H$_2$$-$a lowering of 15 kJ/mol H$_2$ compared to the pure phase and a corresponding lowering in critical temperature of 123 K. In addition, we find that the enthalpy of mixing is rather small and show that the decrease in reaction enthalpy with Zn concentration is approximately linear.
We report here an atomistic study of the mechanical deformation of AuxCu(1-x) atomic-size wires (NWs) by means of high resolution transmission electron microscopy (HRTEM) experiments. Molecular dynamics simulations were also carried out in order to obtain deeper insights on the dynamical properties of stretched NWs. The mechanical properties are significantly dependent on the chemical composition that evolves in time at the junction; some structures exhibit a remarkable de-alloying behavior. Also, our results represent the first experimental realization of mixed linear atomic chains (LACs) among transition and noble metals; in particular, surface energies induce chemical gradients on NW surfaces that can be exploited to control the relative LAC compositions (different number of gold and copper atoms). The implications of these results for nanocatalysis and spin transport of one-atom-thick metal wires are addressed.
We report the stability and electronic structures of the boron nitride nanotubes (BNNTs) with diameters below 4 A by semi-empirical quantum mechanical molecular dynamics simulations and ab initio calculations. Among them (3,0), (3,1), (2,2), (4,0), (4,1) and (3,2) BNNTs can be stable well over room temperature. These small BNNTs become globally stable when encapsulated in a larger BNNT. It is found that the energy gaps and work functions of these small BNNTs are strongly dependent on their chirality and diameters. The small zigzag BNNTs become desirable semiconductors and have peculiar distribution of nearly free electron states due to strong hybridization effect. When such a small BNNT is inserted in a larger one, the energy gap of the formed double-walled BNNT can even be much reduced due to the coupled effect of wall buckling difference and NFE-pi hybridization.
We demonstrate the growth of GaN/AlN quantum well structures by plasma-assisted molecular-beam epitaxy by taking advantage of the surfactant effect of Ga. The GaN/AlN quantum wells show photoluminescence emission with photon energies in the range between 4.2 and 2.3 eV for well widths between 0.7 and 2.6 nm, respectively. An internal electric field strength of $9.2pm 1.0$ MV/cm is deduced from the dependence of the emission energy on the well width.