Do you want to publish a course? Click here

Forbidden coherent transfer observed between two realizations of quasi-harmonic spin system

114   0   0.0 ( 0 )
 Added by Sylvain Bertaina
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The multi-level system $^{55}$Mn$^{2+}$ is used to generate two pseudo-harmonic level systems, as representations of the same electronic sextuplet at different nuclear spin projections. The systems are coupled using a forbidden nuclear transition induced by the crystalline anisotropy. We demonstrate Rabi oscillations between the two representations in conditions similar to two coupled quasi-harmonic quantum oscillators. Rabi oscillations are performed at a detuned pumping frequency which matches energy difference between electro-nuclear states of different oscillators. We measure a coupling stronger than the decoherence rate, to indicate the possibility fast information exchange between the systems.



rate research

Read More

136 - Michael Pretko 2019
We design a set of classical macroscopic electric circuits in which charge exhibits the mobility restrictions of fracton quasiparticles. The crucial ingredient in these circuits is a transformer, which induces currents between pairs of adjacent wires. For an appropriately designed geometry, this induction serves to enforce conservation of dipole moment. We show that a network of capacitors connected via ideal transformers will forever remember the dipole moment of its initial charge configuration. Relaxation of the dipole moment in realistic systems can only occur via flux leakage in the transformers, which will lead to violations of fracton physics at the longest times. We propose a concrete diagnostic for these fractolectric circuits in the form of their characteristic equilibrium charge configurations, which we verify using simple circuit simulation software. These circuits not only provide an experimental testing ground for fracton physics, but also serve as DC filters. We outline extensions of these ideas to circuits featuring other types of higher moment conservation laws, as well as to higher-dimensional circuits which act as fracton current-ice. While our focus is on classical circuits, we discuss how these ideas can be straightforwardly extended to realize quantized fractons in superconducting circuits.
110 - B. Davoudi , M. Polini , G. Sica 2001
We evaluate the effective interactions in a fluid of electrons moving in a plane, on the approach to the quantum phase transition from the paramagnetic to the fully spin-polarized phase that has been reported from Quantum Monte Carlo runs. We use the approach of Kukkonen and Overhauser to treat exchange and correlations under close constraints imposed by sum rules. We show that, as the paramagnetic fluid approaches the phase transition, the effective interactions at low momenta develop an attractive region between parallel-spin electrons and a corresponding repulsive region for antiparallel-spin electron pairs. A connection with the Hubbard model is made and used to estimate the magnetic energy gap and hence the temperature at which the phase transition may become observable with varying electron density in a semiconductor quantum well.
157 - S. Dickmann 2018
In connection with recent studies of extremely long-living spin-cyclotron excitations (actually magneto-excitons) in a quantum Hall electron gas, we discuss contribution to the light-absorption related to the presence of a magneto-exciton ensemble in this purely electronic system. Since the weakly interacting excitations have to obey the Bose-Einstein statistics, one can expect appearance of a coherent state in the ensemble. A comparative analysis of both incoherent and coherent cases is done. Conditions for a phase transition from the incoherent state to the coherent one are discussed.
We report magnetization, nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), and transmission electron microscopy (TEM) studies on the quasi-two-dimensional spin-gap system (CuCl)LaNb2O7, a possible candidate for the J1-J2 model on a square lattice. A sharp single NQR line is observed at the Cu and Cl sites, indicating that both Cu and Cl atoms occupy a unique site. However, the electric field gradient tensors at the Cu, Cl, and La sites do not have axial symmetry. This is incompatible with the reported crystal structure. Thus the J1-J2 model has to be modified. We propose alternative two-dimensional dimer models based on the NMR, NQR, and TEM results. The value of the hyperfine coupling constant at the Cu sites indicates that the spin density is mainly on the d(3z2-r2) orbital (z parallel c). At 1.5 K, Cu- and Nb-NMR signals disappear above the critical field Bc1 = 10.3 T determined from the onset of the magnetization, indicating a field-induced magnetic phase transition at Bc1.
80 - X. M. Yang , L. Jin , 2019
Knot theory provides a powerful tool for the understanding of topological matters in biology, chemistry, and physics. Here knot theory is introduced to describe topological phases in the quantum spin system. Exactly solvable models with long-range interactions are investigated, and Majorana modes of the quantum spin system are mapped into different knots and links. The topological properties of ground states of the spin system are visualized and characterized using crossing and linking numbers, which capture the geometric topologies of knots and links. The interactivity of energy bands is highlighted. In gapped phases, eigenstate curves are tangled and braided around each other forming links. In gapless phases, the tangled eigenstate curves may form knots. Our findings provide an alternative understanding of the phases in the quantum spin system, and provide insights into one-dimension topological phases of matter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا