Do you want to publish a course? Click here

An On/Off Berry Phase Switch in Circular Graphene Resonators

251   0   0.0 ( 0 )
 Added by Joseph Stroscio
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The phase of a quantum state may not return to its original value after the systems parameters cycle around a closed path; instead, the wavefunction may acquire a measurable phase difference called the Berry phase. Berry phases typically have been accessed through interference experiments. Here, we demonstrate an unusual Berry-phase-induced spectroscopic feature: a sudden and large increase in the energy of angular-momentum states in circular graphene p-n junction resonators when a small critical magnetic field is reached. This behavior results from turning on a $pi$-Berry phase associated with the topological properties of Dirac fermions in graphene. The Berry phase can be switched on and off with small magnetic field changes on the order of 10 mT, potentially enabling a variety of optoelectronic graphene device applications.



rate research

Read More

82 - Yi-Wen Liu , Zhe Hou , Si-Yu Li 2019
Since its discovery, Berry phase has been demonstrated to play an important role in many quantum systems. In gapped Bernal bilayer graphene, the Berry phase can be continuously tuned from zero to 2pi, which offers a unique opportunity to explore the tunable Berry phase on the physical phenomena. Here, we report experimental observation of Berry phases-induced valley splitting and crossing in moveable bilayer graphene p-n junction resonators. In our experiment, the bilayer graphene resonators are generated by combining the electric field of scanning tunneling microscope tip with the gap of bilayer graphene. A perpendicular magnetic field changes the Berry phase of the confined bound states in the resonators from zero to 2pi continuously and leads to the Berry phase difference for the two inequivalent valleys in the bilayer graphene. As a consequence, we observe giant valley splitting and unusual valley crossing of the lowest bound states. Our results indicate that the bilayer graphene resonators can be used to manipulate the valley degree of freedom in valleytronics.
When a gap of tunable size opens at the conic band intersections of graphene, the Berry phase does not vanish abruptly, but progressively decreases as the gap increases. The phase depends on the reciprocal-space path radius, i.e., for a doped system, the Fermi wave vector. The phase and its observable consequences can thus be tuned continuously via gap opening --by a modulating potential induced by strain, epitaxy, or nanostructuration-- and doping adjustment.
Electronic band structures dictate the mechanical, optical and electrical properties of crystalline solids. Their experimental determination is therefore of crucial importance for technological applications. While the spectral distribution in energy bands is routinely measured by various techniques, it is more difficult to access the topological properties of band structures such as the Berry phase {gamma}. It is usually thought that measuring the Berry phase requires applying external electromagnetic forces because these allow realizing the adiabatic transport on closed trajectories along which quantum mechanical wave-functions pick up the Berry phase. In graphene, the anomalous quantum Hall effect results from the Berry phase {gamma} = {pi} picked up by massless relativistic electrons along cyclotron orbits and proves the existence of Dirac cones. Contradicting this belief, we demonstrate that the Berry phase of graphene can be measured in absence of any external magnetic field. We observe edge dislocations in the Friedel oscillations formed at hydrogen atoms chemisorbed on graphene. Following Nye and Berry in describing these topological defects as phase singularities of complex fields, we show that the number of additional wave-fronts in the dislocation is a real space measurement of the pseudo spin winding, i.e. graphenes Berry phase. Since the electronic dispersion can also be retrieved from Friedel oscillations, our study establishes the electronic density as a powerful observable to determine both the dispersion relation and topological properties of wavefunctions. This could have profound consequences for the study of the band-structure topology of relativistic and gapped phases in solids.
Berry phase plays an important role in determining many physical properties of quantum systems. However, a Berry phase altering energy spectrum of a quantum system is comparatively rare. Here, we report an unusual tunable valley polarized energy spectra induced by continuously tunable Berry phase in Bernal-stacked bilayer graphene quantum dots. In our experiment, the Berry phase of electron orbital states is continuously tuned from about pi to 2pi by perpendicular magnetic fields. When the Berry phase equals pi or 2pi, the electron states in the two inequivalent valleys are energetically degenerate. By altering the Berry phase to noninteger multiples of pi, large and continuously tunable valley polarized energy spectra are detected in our experiment. The observed Berry phase-induced valley splitting, on the order of 10 meV at a magnetic field of 1 T, is about 100 times larger than Zeeman splitting for spin, shedding light on graphene-based valleytronics.
Berry phase effect plays a central role in many mesoscale condensed matter and quantum chemical systems that are naturally under the environmental influence of dissipation. We propose and microscopically derive a prototypical quantum coherent tunneling model around a monopole or conical potential intersection in order to address the intriguing but overlooked interplay between dissipation and topologically nontrivial Berry phase effect. We adopt the instanton approach with both symmetry analysis and accurate numerical solutions that consistently incorporate nonperturbative dissipation and Berry phase. It reveals a novel dissipative quantum interference phenomenon with Berry phase effect. The phase diagram of this tunneling exhibits Kramers degeneracy, nonmonotonic dependence on dissipation and a generic dissipation-driven phase transition of quantum interference, before which an unconventional dissipation-enhanced regime of quantum tunneling persists.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا