No Arabic abstract
We study the asymptotic behavior of solutions to a monostable integro-differential Fisher-KPP equation , that is where the standard Laplacian is replaced by a convolution term, when the dispersal kernel is fat-tailed. We focus on two different regimes. Firstly, we study the long time/long range scaling limit by introducing a relevant rescaling in space and time and prove a sharp bound on the (super-linear) spreading rate in the Hamilton-Jacobi sense by means of sub-and super-solutions. Secondly, we investigate a long time/small mutation regime for which, after identifying a relevant rescaling for the size of mutations, we derive a Hamilton-Jacobi limit.
In this paper, the regularity results for the integro-differential operators of the fractional Laplacian type by Caffarelli and Silvestre cite{CS1} are extended to those for the integro-differential operators associated with symmetric, regularly varying kernels at zero. In particular, we obtain the uniform Harnack inequality and Holder estimate of viscosity solutions to the nonlinear integro-differential equations associated with the kernels $K_{sigma, beta}$ satisfying $$ K_{sigma,beta}(y)asymp frac{ 2-sigma}{|y|^{n+sigma}}left( logfrac{2}{|y|^2}right)^{beta(2-sigma)}quad mbox{near zero} $$ with respect to $sigmain(0,2)$ close to $2$ (for a given $betainmathbb R$), where the regularity estimates do not blow up as the order $ sigmain(0,2)$ tends to $2.$
We consider the nonlinear Stefan problem $$ left { begin{array} {ll} -d Delta u=a u-b u^2 ;; & mbox{for } x in Omega (t), ; t>0, u=0 mbox{ and } u_t=mu| abla_x u |^2 ;;&mbox{for } x in partialOmega (t), ; t>0, u(0,x)=u_0 (x) ;; & mbox{for } x in Omega_0, end{array}right. $$ where $Omega(0)=Omega_0$ is an unbounded smooth domain in $mathbb R^N$, $u_0>0$ in $Omega_0$ and $u_0$ vanishes on $partialOmega_0$. When $Omega_0$ is bounded, the long-time behavior of this problem has been rather well-understood by cite{DG1,DG2,DLZ, DMW}. Here we reveal some interesting different behavior for certain unbounded $Omega_0$. We also give a unified approach for a weak solution theory to this kind of free boundary problems with bounded or unbounded $Omega_0$.
A semiclassical approximation approach based on the Maslov complex germ method is considered in detail for the 1D nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation under the supposition of weak diffusion. In terms of the semiclassical formalism developed, the original nonlinear equation is reduced to an associated linear partial differential equation and some algebraic equations for the coefficients of the linear equation with a given accuracy of the asymptotic parameter. The solutions of the nonlinear equation are constructed from the solutions of both the linear equation and the algebraic equations. The solutions of the linear problem are found with the use of symmetry operators. A countable family of the leading terms of the semiclassical asymptotics is constructed in explicit form. The semiclassical asymptotics are valid by construction in a finite time interval. We construct asymptotics which are different from the semiclassical ones and can describe evolution of the solutions of the Fisher-Kolmogorov-Petrovskii-Piskunov equation at large times. In the example considered, an initial unimodal distribution becomes multimodal, which can be treated as an example of a space structure.
In Cao, Du, Li and Li [8], a nonlocal diffusion model with free boundaries extending the local diffusion model of Du and Lin [12] was introduced and studied. For Fisher-KPP type nonlinearities, its long-time dynamical behaviour is shown to follow a spreading-vanishing dichotomy. However, when spreading happens, the question of spreading speed was left open in [8]. In this paper we obtain a rather complete answer to this question. We find a condition on the kernel function such that spreading grows linearly in time exactly when this condition holds, which is achieved by completely solving the associated semi-wave problem that determines this linear speed; when the kernel function violates this condition, we show that accelerating spreading happens.
We study the radially symmetric high dimensional Fisher-KPP nonlocal diffusion equation with free boundary, and reveal some fundamental differences from its one dimensional version considered in cite{cdjfa} recently. Technically, this high dimensional problem is much more difficult to treat since it involves two kernel functions which arise from the original kernel function $J(|x|)$ in rather implicit ways. By introducing new techniques, we are able to determine the long-time dynamics of the model, including firstly finding the threshold condition on the kernel function that governs the onset of accelerated spreading, and the determination of the spreading speed when it is finite. Moreover, for two important classes of kernel functions, sharp estimates of the spreading profile are obtained. More precisely, for kernel functions with compact support, we show that logarithmic shifting occurs from the finite wave speed propagation, which is strikingly different from the one dimension case; for kernel functions $J(|x|)$ behaving like $|x|^{-beta}$ for $xinR^N$ near infinity, we obtain the rate of accelerated spreading when $betain (N, N+1]$, which is the exact range of $beta$ where accelerated spreading is possible. These sharp estimates are obtained by constructing subtle upper and lower solutions, based on careful analysis of the involved kernel functions.