No Arabic abstract
In this paper we calculate the radio burst signals from three kinds of structures of superconducting cosmic strings. By taking into account the observational factors including scattering and relativistic effects, we derive the event rate of radio bursts as a function of redshift with the theoretical parameters $Gmu$ and $mathcal{I}$ of superconducting strings. Our analyses show that cusps and kinks may have noticeable contributions to the event rate and in most cases cusps would dominate the contribution, while the kink-kink collisions tend to have secondary effects. By fitting theoretical predictions with the normalized data of fast radio bursts, we for the first time constrain the parameter space of superconducting strings and report that the parameter space of $Gmu sim [10^{-14}, 10^{-12}]$ and $mathcal{I} sim [10^{-1}, 10^{2}] ~ rm{GeV}$ fit the observation well although the statistic significance is low due to the lack of observational data. Moreover, we derive two types of best fittings, with one being dominated by cusps with a redshift $z = 1.3$, and the other dominated by kinks at the range of the maximal event rate.
We consider some general implications of bright gamma-ray counterparts to fast radio bursts (FRBs). We show that even if these manifest in only a fraction of FRBs, gamma-ray detections with current satellites (including Swift) can provide stringent constraints on cosmological FRB models. If the energy is drawn from the magnetic energy of a compact object such as a magnetized neutron star, the sources should be nearby and be very rare. If the intergalactic medium is responsible for the observed dispersion measure, the required gamma-ray energy is comparable to that of the early afterglow or extended emission of short gamma-ray bursts. While this can be reconciled with the rotation energy of compact objects, as expected in many merger scenarios, the prompt outflow that yields the gamma-rays is too dense for radio waves to escape. Highly relativistic winds launched in a precursor phase, and forming a wind bubble, may avoid the scattering and absorption limits and could yield FRB emission. Largely independent of source models, we show that detectable radio afterglow emission from gamma-ray bright FRBs can reasonably be anticipated. Gravitational wave searches can also be expected to provide useful tests.
Fast radio bursts (FRBs) at cosmological distances have recently been discovered, whose duration is about milliseconds. We argue that the observed short duration is difficult to explain by giant flares of soft gamma-ray repeaters, though their event rate and energetics are consistent with FRBs. Here we discuss binary neutron star (NS-NS) mergers as a possible origin of FRBs. The FRB rate is within the plausible range of NS-NS merger rate and its cosmological evolution, while a large fraction of NS-NS mergers must produce observable FRBs. A likely radiation mechanism is coherent radio emission like radio pulsars, by magnetic braking when magnetic fields of neutron stars are synchronized to binary rotation at the time of coalescence. Magnetic fields of the standard strength (~ 10^{12-13} G) can explain the observed FRB fluxes, if the conversion efficiency from magnetic braking energy loss to radio emission is similar to that of isolated radio pulsars. Corresponding gamma-ray emission is difficult to detect by current or past gamma-ray burst satellites. Since FRBs tell us the exact time of mergers, a correlated search would significantly improve the effective sensitivity of gravitational wave detectors.
Recently, Thornton et al. reported the detection of four fast radio bursts (FRBs). The dispersion measures indicate that the sources of these FRBs are at cosmological distance. Given the large full sky event rate ~ 10^4 sky^-1 day^-1, the FRBs are a promising target for multi-messenger astronomy. Here we propose double degenerate, binary white-dwarf (WD) mergers as the source of FRBs, which are produced by coherent emission from the polar region of a rapidly rotating, magnetized massive WD formed after the merger. The basic characteristics of the FRBs, such as the energetics, emission duration and event rate, can be consistently explained in this scenario. As a result, we predict that some FRBs can accompany type Ia supernovae (SNe Ia) or X-ray debris disks. Simultaneous detection could test our scenario and probe the progenitors of SNe Ia, and moreover would provide a novel constraint on the cosmological parameters. We strongly encourage future SN and X-ray surveys that follow up FRBs.
In 2007, a very bright radio pulse was identified in the archival data of the Parkes Telescope in Australia, marking the beginning of a new research branch in astrophysics. In 2013, this kind of millisecond bursts with extremely high brightness temperature takes a unified name, fast radio burst (FRB). Over the first few years, FRBs seemed very mysterious because the sample of known events was limited. With the improvement of instruments over the last five years, hundreds of new FRBs have been discovered. The field is now undergoing a revolution and understanding of FRB has rapidly increased as new observational data increasingly accumulates. In this review, we will summarize the basic physics of FRBs and discuss the current research progress in this area. We have tried to cover a wide range of FRB topics, including the observational property, propagation effect, population study, radiation mechanism, source model, and application in cosmology. A framework based on the latest observational facts is now under construction. In the near future, this exciting field is expected to make significant breakthroughs.
We summarize our understanding of millisecond radio bursts from an extragalactic population of sources. FRBs occur at an extraordinary rate, thousands per day over the entire sky with radiation energy densities at the source about ten billion times larger than those from Galactic pulsars. We survey FRB phenomenology, source models and host galaxies, coherent radiation models, and the role of plasma propagation effects in burst detection. The FRB field is guaranteed to be exciting: new telescopes will expand the sample from the current ~80 unique burst sources (and a few secure localizations and redshifts) to thousands, with burst localizations that enable host-galaxy redshifts emerging directly from interferometric surveys. * FRBs are now established as an extragalactic phenomenon. * Only a few sources are known to repeat. Despite the failure to redetect other FRBs, they are not inconsistent with all being repeaters. * FRB sources may be new, exotic kinds of objects or known types in extreme circumstances. Many inventive models exist, ranging from alien spacecraft to cosmic strings but those concerning compact objects and supermassive black holes have gained the most attention. A rapidly rotating magnetar is a promising explanation for FRB 121102 along with the persistent source associated with it, but alternative source models are not ruled out for it or other FRBs. * FRBs are powerful tracers of circumsource environments, `missing baryons in the IGM, and dark matter. * The relative contributions of host galaxies and the IGM to propagation effects have yet to be disentangled, so dispersion measure distances have large uncertainties.