Do you want to publish a course? Click here

Robust Tracking Using Region Proposal Networks

176   0   0.0 ( 0 )
 Added by Jimmy Ren
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Recent advances in visual tracking showed that deep Convolutional Neural Networks (CNN) trained for image classification can be strong feature extractors for discriminative trackers. However, due to the drastic difference between image classification and tracking, extra treatments such as model ensemble and feature engineering must be carried out to bridge the two domains. Such procedures are either time consuming or hard to generalize well across datasets. In this paper we discovered that the internal structure of Region Proposal Network (RPN)s top layer feature can be utilized for robust visual tracking. We showed that such property has to be unleashed by a novel loss function which simultaneously considers classification accuracy and bounding box quality. Without ensemble and any extra treatment on feature maps, our proposed method achieved state-of-the-art results on several large scale benchmarks including OTB50, OTB100 and VOT2016. We will make our code publicly available.



rate research

Read More

The study of mouse social behaviours has been increasingly undertaken in neuroscience research. However, automated quantification of mouse behaviours from the videos of interacting mice is still a challenging problem, where object tracking plays a key role in locating mice in their living spaces. Artificial markers are often applied for multiple mice tracking, which are intrusive and consequently interfere with the movements of mice in a dynamic environment. In this paper, we propose a novel method to continuously track several mice and individual parts without requiring any specific tagging. Firstly, we propose an efficient and robust deep learning based mouse part detection scheme to generate part candidates. Subsequently, we propose a novel Bayesian Integer Linear Programming Model that jointly assigns the part candidates to individual targets with necessary geometric constraints whilst establishing pair-wise association between the detected parts. There is no publicly available dataset in the research community that provides a quantitative test-bed for the part detection and tracking of multiple mice, and we here introduce a new challenging Multi-Mice PartsTrack dataset that is made of complex behaviours and actions. Finally, we evaluate our proposed approach against several baselines on our new datasets, where the results show that our method outperforms the other state-of-the-art approaches in terms of accuracy.
In this paper, we study a discriminatively trained deep convolutional network for the task of visual tracking. Our tracker utilizes both motion and appearance features that are extracted from a pre-trained dual stream deep convolution network. We show that the features extracted from our dual-stream network can provide rich information about the target and this leads to competitive performance against state of the art tracking methods on a visual tracking benchmark.
Image-to-image translation has been made much progress with embracing Generative Adversarial Networks (GANs). However, its still very challenging for translation tasks that require high quality, especially at high-resolution and photorealism. In this paper, we present Discriminative Region Proposal Adversarial Networks (DRPAN) for high-quality image-to-image translation. We decompose the procedure of image-to-image translation task into three iterated steps, first is to generate an image with global structure but some local artifacts (via GAN), second is using our DRPnet to propose the most fake region from the generated image, and third is to implement image inpainting on the most fake region for more realistic result through a reviser, so that the system (DRPAN) can be gradually optimized to synthesize images with more attention on the most artifact local part. Experiments on a variety of image-to-image translation tasks and datasets validate that our method outperforms state-of-the-arts for producing high-quality translation results in terms of both human perceptual studies and automatic quantitative measures.
Markerless tracking of hands and fingers is a promising enabler for human-computer interaction. However, adoption has been limited because of tracking inaccuracies, incomplete coverage of motions, low framerate, complex camera setups, and high computational requirements. In this paper, we present a fast method for accurately tracking rapid and complex articulations of the hand using a single depth camera. Our algorithm uses a novel detection-guided optimization strategy that increases the robustness and speed of pose estimation. In the detection step, a randomized decision forest classifies pixels into parts of the hand. In the optimization step, a novel objective function combines the detected part labels and a Gaussian mixture representation of the depth to estimate a pose that best fits the depth. Our approach needs comparably less computational resources which makes it extremely fast (50 fps without GPU support). The approach also supports varying static, or moving, camera-to-scene arrangements. We show the benefits of our method by evaluating on public datasets and comparing against previous work.
The recent trend in multiple object tracking (MOT) is heading towards leveraging deep learning to boost the tracking performance. However, it is not trivial to solve the data-association problem in an end-to-end fashion. In this paper, we propose a novel proposal-based learnable framework, which models MOT as a proposal generation, proposal scoring and trajectory inference paradigm on an affinity graph. This framework is similar to the two-stage object detector Faster RCNN, and can solve the MOT problem in a data-driven way. For proposal generation, we propose an iterative graph clustering method to reduce the computational cost while maintaining the quality of the generated proposals. For proposal scoring, we deploy a trainable graph-convolutional-network (GCN) to learn the structural patterns of the generated proposals and rank them according to the estimated quality scores. For trajectory inference, a simple deoverlapping strategy is adopted to generate tracking output while complying with the constraints that no detection can be assigned to more than one track. We experimentally demonstrate that the proposed method achieves a clear performance improvement in both MOTA and IDF1 with respect to previous state-of-the-art on two public benchmarks. Our code is available at https://github.com/daip13/LPC_MOT.git.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا