Distributed SAGA: Maintaining linear convergence rate with limited communication


Abstract in English

In recent years, variance-reducing stochastic methods have shown great practical performance, exhibiting linear convergence rate when other stochastic methods offered a sub-linear rate. However, as datasets grow ever bigger and clusters become widespread, the need for fast distribution methods is pressing. We propose here a distribution scheme for SAGA which maintains a linear convergence rate, even when communication between nodes is limited.

Download