Do you want to publish a course? Click here

Holographic entanglement entropy of a $1+1$ dimensional $p$-wave superconductor

148   0   0.0 ( 0 )
 Added by Mitsutoshi Fujita
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We examine the behavior of entanglement entropy of a subsystem $A$ in a fully backreacted holographic model of a $1+1$ dimensional $p$ wave superconductor across the phase transition. For a given temperature, the system goes to a superconducting phase beyond a critical value of the charge density. The entanglement entropy, considered as a function of the charge density at a given temperature, has a cusp at the critical point. In addition, we find that there are three different behaviors in the condensed phase, depending on the subsystem size. For a subsystem size $l$ smaller than a critical size $l_{c1}$, entanglement entropy continues to increase as a function of the charge density as we cross the phase transition. When $l$ lies between $l_{c1}$ and another critical size $l_{c2}$ the entanglement entropy displays a non-monotonic behavior, while for $l > l_{c2}$ it decreases monotonically. At large charge densities entanglement entropy appears to saturate. The non-monotonic behavior leads to a novel phase diagram for this system.



rate research

Read More

200 - Mitsutoshi Fujita 2018
We analyze the holographic subregion complexity in a $3d$ black hole with the vector hair. This $3d$ black hole is dual to a $1+1$ dimensional $p$-wave superconductor. We probe the black hole by changing the size of the interval and by fixing $q$ or $T$. We show that the universal part is finite across the superconductor phase transition and has competitive behaviors different from the finite part of entanglement entropy. The behavior of the subregion complexity depends on the gravitational coupling constant divided by the gauge coupling constant. When this ratio is less than the critical value, the subregion complexity increases as temperature becomes low. This behavior is similar to the one of the holographic $1+1$ dimensional $s$-wave superconductor arXiv:1704.00557. When the ratio is larger than the critical value, the subregion complexity has a non-monotonic behavior as a function of $q$ or $T$. We also find a discontinuous jump of the subregion complexity as a function of the size of the interval. The subregion complexity has the maximum when it wraps the almost entire spatial circle. Due to competitive behaviors between normal and condensed phases, the universal term in the condensed phase becomes even smaller than that of the normal phase by probing the black hole horizon at a large interval. It implies that the formed condensate decreases the subregion complexity like the case of the entanglement entropy.
413 - Rong-Gen Cai , Li Li , Li-Fang Li 2013
We continue our study of entanglement entropy in the holographic superconducting phase transitions. In this paper we consider the holographic p-wave superconductor/insulator model, where as the back reaction increases, the transition is changed from second order to first order. We find that unlike the s-wave case, there is no additional first order transition in the superconducting phase. We calculate the entanglement entropy for two strip geometries. One is parallel to the super current, and the other is orthogonal to the super current. In both cases, we find that the entanglement entropy monotonically increases with respect to the chemical potential.
We study $(1+1)$-dimensional p-wave holographic superconductors described by three dimensional Einstein-Maxwell gravity coupled to a massive complex vector field in the context of $AdS_3/CFT_2$ correspondence. In the probe limit where the backreation of matter fields is neglected, we show that there occurs a formation of a vector hair around the black hole below a certain critical temperature. In the dual strongly coupled $(1+1)$-dimensional boundary theory, this holographically corresponds to the formation of a charged vector condensate spontaneously breaking both the $U(1)$ and $SO(1,1)$ symmetries. We numerically compute the ac conductivity for the superconducting phase of the boundary field theory and find that the presence of a magnetic moment term in the dual bulk theory effects the conductivity in the boundary field theory.
300 - Avik Chakraborty 2019
We present the results of our computation of the subregion complexity and also compare it with the entanglement entropy of a $2+1$--dimensional holographic superconductor which has a fully backreacted gravity dual with a stable ground sate. We follow the complexity equals volume or the CV conjecture. We find that there is only a single divergence for a strip entangling surface and the complexity grows linearly with the large strip width. During the normal phase the complexity increases with decreasing temperature, but during the superconducting phase it behaves differently depending on the order of phase transition. We also show that the universal term is finite and the phase transition occurs at the same critical temperature as obtained previously from the free energy computation of the system. In one case, we observe multivaluedness in the complexity in the form of an S curve.
We study the Kibble-Zurek mechanism in a 2d holographic p-wave superconductor model with a homogeneous source quench on the critical point. We derive, on general grounds, the scaling of the Kibble-Zurek time, which marks breaking-down of adiabaticity. It is expressed in terms of four critical exponents, including three static and one dynamical exponents. Via explicit calculations within a holographic model, we confirm the scaling of the Kibble-Zurek time and obtain the scaling functions in the quench process. We find the results are formally similar to a homogeneous quench in a higher dimensional holographic s-wave superconductor. The similarity is due to the special type of quench we take. We expect differences in the quench dynamics if the condition of homogeneous source and dominance of critical mode are relaxed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا