No Arabic abstract
We develop a new theoretical framework to analyze the generalization error of deep learning, and derive a new fast learning rate for two representative algorithms: empirical risk minimization and Bayesian deep learning. The series of theoretical analyses of deep learning has revealed its high expressive power and universal approximation capability. Although these analyses are highly nonparametric, existing generalization error analyses have been developed mainly in a fixed dimensional parametric model. To compensate this gap, we develop an infinite dimensional model that is based on an integral form as performed in the analysis of the universal approximation capability. This allows us to define a reproducing kernel Hilbert space corresponding to each layer. Our point of view is to deal with the ordinary finite dimensional deep neural network as a finite approximation of the infinite dimensional one. The approximation error is evaluated by the degree of freedom of the reproducing kernel Hilbert space in each layer. To estimate a good finite dimensional model, we consider both of empirical risk minimization and Bayesian deep learning. We derive its generalization error bound and it is shown that there appears bias-variance trade-off in terms of the number of parameters of the finite dimensional approximation. We show that the optimal width of the internal layers can be determined through the degree of freedom and the convergence rate can be faster than $O(1/sqrt{n})$ rate which has been shown in the existing studies.
The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.
Deep kernel learning (DKL) leverages the connection between Gaussian process (GP) and neural networks (NN) to build an end-to-end, hybrid model. It combines the capability of NN to learn rich representations under massive data and the non-parametric property of GP to achieve automatic regularization that incorporates a trade-off between model fit and model complexity. However, the deterministic encoder may weaken the model regularization of the following GP part, especially on small datasets, due to the free latent representation. We therefore present a complete deep latent-variable kernel learning (DLVKL) model wherein the latent variables perform stochastic encoding for regularized representation. We further enhance the DLVKL from two aspects: (i) the expressive variational posterior through neural stochastic differential equation (NSDE) to improve the approximation quality, and (ii) the hybrid prior taking knowledge from both the SDE prior and the posterior to arrive at a flexible trade-off. Intensive experiments imply that the DLVKL-NSDE performs similarly to the well calibrated GP on small datasets, and outperforms existing deep GPs on large datasets.
We investigate the learning rate of multiple kernel learning (MKL) with $ell_1$ and elastic-net regularizations. The elastic-net regularization is a composition of an $ell_1$-regularizer for inducing the sparsity and an $ell_2$-regularizer for controlling the smoothness. We focus on a sparse setting where the total number of kernels is large, but the number of nonzero components of the ground truth is relatively small, and show sharper convergence rates than the learning rates have ever shown for both $ell_1$ and elastic-net regularizations. Our analysis reveals some relations between the choice of a regularization function and the performance. If the ground truth is smooth, we show a faster convergence rate for the elastic-net regularization with less conditions than $ell_1$-regularization; otherwise, a faster convergence rate for the $ell_1$-regularization is shown.
Distributed deep learning systems (DDLS) train deep neural network models by utilizing the distributed resources of a cluster. Developers of DDLS are required to make many decisions to process their particular workloads in their chosen environment efficiently. The advent of GPU-based deep learning, the ever-increasing size of datasets and deep neural network models, in combination with the bandwidth constraints that exist in cluster environments require developers of DDLS to be innovative in order to train high quality models quickly. Comparing DDLS side-by-side is difficult due to their extensive feature lists and architectural deviations. We aim to shine some light on the fundamental principles that are at work when training deep neural networks in a cluster of independent machines by analyzing the general properties associated with training deep learning models and how such workloads can be distributed in a cluster to achieve collaborative model training. Thereby we provide an overview of the different techniques that are used by contemporary DDLS and discuss their influence and implications on the training process. To conceptualize and compare DDLS, we group different techniques into categories, thus establishing a taxonomy of distributed deep learning systems.
We propose a new point of view for regularizing deep neural networks by using the norm of a reproducing kernel Hilbert space (RKHS). Even though this norm cannot be computed, it admits upper and lower approximations leading to various practical strategies. Specifically, this perspective (i) provides a common umbrella for many existing regularization principles, including spectral norm and gradient penalties, or adversarial training, (ii) leads to new effective regularization penalties, and (iii) suggests hybrid strategies combining lower and upper bounds to get better approximations of the RKHS norm. We experimentally show this approach to be effective when learning on small datasets, or to obtain adversarially robust models.