Do you want to publish a course? Click here

Extension of MIH to Support FPMIPv6 for Optimized Heterogeneous Handover

176   0   0.0 ( 0 )
 Added by Jianfeng Guan
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Fast handover for Proxy Mobile IPv6 (FPMIPv6) can reduce handover delay and packet loss compared with Proxy Mobile IPv6 (PMIPv6). However, FPMIPv6 still cannot handle heterogeneous handovers due to the lack of unified Layer 2 triggering mechanism along with the booming of emerging wireless technologies. Media Independent Handover (MIH) can provide heterogeneous handover support, and a lot of integration solutions have been proposed for it. However, most of them focus on the integration of MIH and PMIPv6, and require the additional mechanisms, which are out of the scope the MIH and difficult to standardize the operations. Therefore, in this paper, we propose an integration solution of FPMIPv6 and MIH by extending the existing MIH standards, and adopt the city section mobility model to analyze its performance under different scenarios. The analytical results show that the proposed solution is capable of reducing the handover delay and the signaling cost compared with the standard as well as the fast handover solutions.



rate research

Read More

The exponential growth of the number of multihomed mobile devices is changing the way how we can connect to the Internet. Our mobile devices are demanding for more network resources, in terms of traffic volume and QoS requirements. Unfortunately, it is very hard to a multihomed device to be simultaneously connected to the network through multiple links. The current work enhances the network access of multihomed devices agnostically to the deployed access technologies. This enhancement is achieved by using simultaneously all of the mobile devices interfaces, and by routing each individual data flow through the most convenient access technology. The proposed solution is only deployed at the network side and it extends Proxy Mobile IPv6 with flow mobility in a completely transparent way to mobile nodes. In fact, it gives particular attention to the handover mechanisms, by improving the detection and attachment of nodes in the network, with the inclusion of the IEEE 802.21 standard in the solution. This provides the necessary implementation and integration details to extend a network topology with femtocell devices. Each femtocell is equipped with various network interfaces supporting a diverse set of access technologies. There is also a decision entity that manages individually each data flow according to its QoS / QoE requisites. The proposed solution has been developed and extensively tested with a real prototype. Evaluation results evidence that the overhead for using the solution is negligible as compared to the offered advantages such as: the support of flow mobility, the fulfil of VoIP functional requisites, the session continuity in spite of flows mobility, its low overhead, its high scalability, and the complete transparency of the proposed solution to the user terminals.
In this paper, we review well-known handovers algorithms in satellite environment. The modern research trends and contributions are proposed and summarized in order to overcome their considering problems in satellite-air-ground integrated network environment caused by the fast movement of Low Earth Orbit (LEO) satellite and related frequent handover occurrences.
We study and compare three coded schemes for single-server wireless broadcast of multiple description coded content to heterogeneous users. The users (sink nodes) demand different number of descriptions over links with different packet loss rates. The three coded schemes are based on the LT codes, growth codes, and randomized chunked codes. The schemes are compared on the basis of the total number of transmissions required to deliver the demands of all users, which we refer to as the server (source) delivery time. We design the degree distributions of LT codes by solving suitably defined linear optimization problems, and numerically characterize the achievable delivery time for different coding schemes. We find that including a systematic phase (uncoded transmission) is significantly beneficial for scenarios with low demands, and that coding is necessary for efficiently delivering high demands. Different demand and error rate scenarios may require very different coding schemes. Growth codes and chunked codes do not perform as well as optimized LT codes in the heterogeneous communication scenario.
The advent of RoCE (RDMA over Converged Ethernet) has led to a significant increase in the use of RDMA in datacenter networks. To achieve good performance, RoCE requires a lossless network which is in turn achieved by enabling Priority Flow Control (PFC) within the network. However, PFC brings with it a host of problems such as head-of-the-line blocking, congestion spreading, and occasional deadlocks. Rather than seek to fix these issues, we instead ask: is PFC fundamentally required to support RDMA over Ethernet? We show that the need for PFC is an artifact of current RoCE NIC designs rather than a fundamental requirement. We propose an improved RoCE NIC (IRN) design that makes a few simple changes to the RoCE NIC for better handling of packet losses. We show that IRN (without PFC) outperforms RoCE (with PFC) by 6-83% for typical network scenarios. Thus not only does IRN eliminate the need for PFC, it improves performance in the process! We further show that the changes that IRN introduces can be implemented with modest overheads of about 3-10% to NIC resources. Based on our results, we argue that research and industry should rethink the current trajectory of network support for RDMA.
In this paper, the problem of vertical handover in software-defined network (SDN) based heterogeneous networks (HetNets) is studied. In the studied model, HetNets are required to offer diverse services for mobile users. Using an SDN controller, HetNets have the capability of managing users access and mobility issues but still have the problems of ping-pong effect and service interruption during vertical handover. To solve these problems, a mobility-aware seamless handover method based on multipath transmission control protocol (MPTCP) is proposed. The proposed handover method is executed in the controller of the software-defined HetNets (SDHetNets) and consists of three steps: location prediction, network selection, and handover execution. In particular, the method first predicts the users location in the next moment with an echo state network (ESN). Given the predicted location, the SDHetNet controller can determine the candidate network set for the handover to pre-allocate network wireless resources. Second, the target network is selected through fuzzy analytic hierarchical process (FAHP) algorithm, jointly considering user preferences, service requirements, network attributes, and user mobility patterns. Then, seamless handover is realized through the proposed MPTCP-based handover mechanism. Simulations using real-world user trajectory data from Korea Advanced Institute of Science & Technology show that the proposed method can reduce the handover times by 10.85% to 29.12% compared with traditional methods. The proposed method also maintains at least one MPTCP subflow connected during the handover process and achieves a seamless handover.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا