No Arabic abstract
We have studied the structural, magnetic properties, and electronic structure of the compound InCuPO5 synthesized by solid state reaction method. The structure of InCuPO5 comprises of S = 1/2 uniform spin chains formed by corner-shared CuO4 units. Magnetic susceptibility chi(T) data shows a broad maximum at about 65 K, a characteristic feature of one-dimensional (1D) magnetism. The chi(T) data is fitted to the coupled, S = 1/2 Heisenberg antiferromagnetic (HAFM) uniform chain model that gives the intra-chain coupling (J/kB) between nearest neighbour Cu2+ ions as -100 K and the ratio of inter-chain to intra-chain coupling (J/J) as about 0.07. The exchange couplings estimated from the magnetic data analysis are in good agreement with the computed values from the electronic structure calculations based on density functional theory + Hubbard U (DFT+U) approach. The combination of theoretical and experimental analysis confirms that InCuPO5 is a candidate material for weakly coupled S = 1/2 uniform chains. A detailed theoretical analysis of the electronic structure further reveals that the system is insulating with a gap of 2.4 eV and a local moment of 0.70 muB /Cu.
Static magnetic susceptibility chi, ac susceptibility chi_{ac} and specific heat C versus temperature T measurements on polycrystalline samples of In2VO5 and chi and C versus T measurements on the isostructural, nonmagnetic compound In2TiO5 are reported. A Curie-Wiess fit to the chi(T) data above 175 K for In2VO5 indicates ferromagnetic exchange between V^{4+} (S = 1/2) moments. Below 150 K the chi(T) data deviate from the Curie-Weiss behavior but there is no signature of any long range magnetic order down to 1.8 K. There is a cusp at 2.8 K in the zero field cooled (ZFC) chi(T) data measured in a magnetic field of 100 Oe and the ZFC and field cooled (FC) data show a bifurcation below this temperature. The frequency dependence of the chi_{ac}(T) data indicate that below 3 K the system is in a spin-glass state. The difference Delta C between the heat capacity of In2VO5 and In2TiO5 shows a broad anomaly peaked at 130 K. The entropy upto 300 K is more than what is expected for S = 1/2 moments. The anomaly in Delta C and the extra entropy suggests that there may be a structural change below 130 K in In2VO5.
The compound KTi(SO4)2.H2O was recently reported as a quasi one-dimensional spin 1/2 compound with competing antiferromagnetic nearest neighbor exchange J1 and next-nearest neighbor exchange J2 along the chain with a frustration ratio alpha = J2/J1 ~ 0.29 [Chem. Mater. vol. 20, pg. 8 (2008)]. Here, we report a microscopically based magnetic model for this compound derived from density functional electronic structure calculations along with respective tight-binding models. Our calculations confirm the quasi one-dimensional nature of the system with antiferromagnetic J1 and J2, but suggest a significantly larger frustration ratio alpha ~ 1.1 +- 0.2. Based on transfer matrix renormalization group calculations we found that, due to an intrinsic symmetry of the J1-J2 model, our larger frustration ratio alpha is also consistent with the previous thermodynamic data. To resolve this issue, we propose performing high-field magnetization measurements and low temperature susceptibility measurements which should allow to precisely identify the frustration ratio alpha.
We report an investigation on structure and magnetic properties of the $S=3/2$ zigzag spin chain compound BaCoTe$_2$O$_7$. Neutron diffraction measurements reveal BaCoTe$_2$O$_7$ crystallizes in the noncentrosymmetric space group $Ama2$ with a canted $uparrowuparrowdownarrowdownarrow$ spin structure along the quasi-one-dimensional zigzag chain and a moment size of $1.89(2)mu_B$ at 2 K. Magnetic susceptibility and specific heat measurements yield an antiferromagnetic phase transition at $T_N=6.2$ K. A negative Curie-Weiss temperature $Theta_{CW}=-74.7(2)$ K and an empirical frustration parameter of $f=|Theta_text{CW}|/T_text{N}approx12$ is obtained from fitting the magnetic susceptibility, indicating antiferromagnetic interactions and strong magnetic frustration. By employing ultraviolet-visible absorption spectroscopy and first principles calculations, an indirect band gap of 2.68(2) eV is determined. We propose that the canted zigzag spin chain of BaCoTe$_2$O$_7$ may produce a change of the polarization via exchange striction mechanism.
Based on density functional calculations, we present a detailed theoretical study of the electronic structure and the magnetic properties of the quasi-one dimensional chain cuprate Li_2ZrCuO_4 (Li_2CuZrO_4). For the relevant ratio of the next-nearest neighbor exchange J_2 to the nearest neighbor exchange J_1 we find alpha = -J_2/J_1 = 0.22pm0.02 which is very close to the critical point at 1/4. Owing this vicinity to a ferromagnetic-helical critical point, we study in detail the influence of structural peculiarities such as the reported Li disorder and the non-planar chain geometry on the magnetic interactions combining the results of LDA based tight-binding models with LDA+U derived exchange parameters. Our investigation is complemented by an exact diagonalization study of a multi-band Hubbard model for finite clusters predicting a strong temperature dependence of the optical conductivity for Li_2ZrCuO_4.
We report an experimental study of co, a Mott insulator containing chains of edge-sharing CuO$_4$ plaquettes, by polarized x-ray absorption spectroscopy (XAS), resonant magnetic x-ray scattering (RMXS), magnetic susceptibility, and pyroelectric current measurements. The XAS data show that the valence holes reside exclusively on the Cu$^{2+}$ sites within the copper-oxide spin chains and populate a $d$-orbital polarized within the CuO$_4$ plaquettes. The RMXS measurements confirm the presence of incommensurate magnetic order below a Neel temperature of $T_N = 11.5$ K, which was previously inferred from neutron powder diffraction and nuclear magnetic resonance data. In conjunction with the magnetic susceptibility and XAS data, they also demonstrate a new orbital selection rule for RMXS that is of general relevance for magnetic structure determinations by this technique. Dielectric property measurements reveal the absence of significant ferroelectric polarization below $T_N$, which is in striking contrast to corresponding observations on the isostructural compound lco. The results are discussed in the context of current theories of multiferroicity.