Do you want to publish a course? Click here

Convergence from Divergence

295   0   0.0 ( 0 )
 Added by Gerald V. Dunne
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show how to convert divergent series, which typically occur in many applications in physics, into rapidly convergent inverse factorial series. This can be interpreted physically as a novel resummation of perturbative series. Being convergent, these new series allow rigorous extrapolation from an asymptotic region with a large parameter, to the opposite region where the parameter is small. We illustrate the method with various physical examples, and discuss how these convergent series relate to standard methods such as Borel summation, and also how they incorporate the physical Stokes phenomenon. We comment on the relation of these results to Dysons physical argument for the divergence of perturbation theory. This approach also leads naturally to a wide class of relations between bosonic and fermionic partition functions, and Klein-Gordon and Dirac determinants.



rate research

Read More

294 - P.V. Pobylitsa 2008
Usually the asymptotic behavior for large orders of the perturbation theory is reached rather slowly. However, in the case of the N-component $phi^4$ model in D=4 dimensions one can find a special quantity that exhibits an extremely fast convergence to the asymptotic form. A comparison of the available 5-loop result for this quantity with the asymptotic value shows agreement at the 0.1% level. An analogous superfast convergence to the asymptotic form happens in the case of the O(N)-symmetric anharmonic oscillator where this convergence has inverse factorial type. The large orders of the $epsilon$ expansion for critical exponents manifest a similar effect.
129 - V. V. Varlamov 2011
Extended particles are considered in terms of the fields on the Poincar{e} group. Dirac like wave equations for extended particles of any spin are defined on the various homogeneous spaces of the Poincar{e} group. Free fields of the spin 1/2 and 1 (Dirac and Maxwell fields) are considered in detail on the eight-dimensional homogeneous space, which is equivalent to a direct product of Minkowski spacetime and two-dimensional complex sphere. It is shown that a massless spin-1 field, corresponding to a photon field, should be defined within principal series representations of the Lorentz group. Interaction between spin-1/2 and spin-1 fields is studied in terms of a trilinear form. An analogue of the Dyson formula for $S$-matrix is introduced on the eight-dimensional homogeneous space. It is shown that in this case elements of the $S$-matrix are defined by convergent integrals.
Some aspects of the exotic particle, associated with the two-parameter central extension of the planar Galilei group are reviewed. A fundamental property is that it has non-commuting position coordinates. Other and generalized non-commutative models are also discussed. Minimal as well as anomalous coupling to an external electromagnetic field is presented. Supersymmetric extension is also considered. Exotic Galilean symmetry is also found in Moyal field theory. Similar equations arise for a semiclassical Bloch electron, used to explain the anomalous/spin/optical Hall effects.
153 - M. Mintchev , E. Ragoucy 2007
An algebraic framework for quantization in presence of arbitrary number of point-like defects on the line is developed. We consider a scalar field which interacts with the defects and freely propagates away of them. As an application we compute the Casimir force both at zero and finite temperature. We derive also the charge density in the Gibbs state of a complex scalar field with defects. The example of two delta-defects is treated in detail.
132 - Piotr Su{l}kowski 2008
We consider two different physical systems for which the basis of the Hilbert space can be parametrized by Young diagrams: free complex fermions and the phase model of strongly correlated bosons. Both systems have natural, well-known deformations parametrized by a parameter Q: the former one is related to the deformed boson-fermion correspondence introduced by N. Jing, while the latter is the so-called Q-boson, arising also in the context of quantum groups. These deformations are equivalent and can be realized in the same way in the algebra of Hall-Littlewood symmetric functions. Without a deformation, these reduce to Schur functions, which can be used to construct a generating function of plane partitions, reproducing a topological string partition function on $C^3$. We show that a deformation of both systems leads then to a deformed generating function, which reproduces topological string partition function of the conifold, with the deformation parameter Q identified with the size of $P^1$. Similarly, a deformation of the fermion one-point function results in the A-brane partition function on the conifold.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا