Nearly Semiparametric Efficient Estimation of Quantile Regression


Abstract in English

As a competitive alternative to least squares regression, quantile regression is popular in analyzing heterogenous data. For quantile regression model specified for one single quantile level $tau$, major difficulties of semiparametric efficient estimation are the unavailability of a parametric efficient score and the conditional density estimation. In this paper, with the help of the least favorable submodel technique, we first derive the semiparametric efficient scores for linear quantile regression models that are assumed for a single quantile level, multiple quantile levels and all the quantile levels in $(0,1)$ respectively. Our main discovery is a one-step (nearly) semiparametric efficient estimation for the regression coefficients of the quantile regression models assumed for multiple quantile levels, which has several advantages: it could be regarded as an optimal way to pool information across multiple/other quantiles for efficiency gain; it is computationally feasible and easy to implement, as the initial estimator is easily available; due to the nature of quantile regression models under investigation, the conditional density estimation is straightforward by plugging in an initial estimator. The resulting estimator is proved to achieve the corresponding semiparametric efficiency lower bound under regularity conditions. Numerical studies including simulations and an example of birth weight of children confirms that the proposed estimator leads to higher efficiency compared with the Koenker-Bassett quantile regression estimator for all quantiles of interest.

Download