Do you want to publish a course? Click here

Machine Layout and Performance

83   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Chapter 2 in High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report. The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 300 metre-long high-power superconducting links with negligible energy dissipation. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of HL-LHC.



rate research

Read More

The UA9 experimental equipment was installed in the CERN-SPS in March 09 with the aim of investigating crystal assisted collimation in coasting mode. Its basic layout comprises silicon bent crystals acting as primary collimators mounted inside two vacuum vessels. A movable 60 cm long block of tungsten located downstream at about 90 degrees phase advance intercepts the deflected beam. Scintillators, Gas Electron Multiplier chambers and other beam loss monitors measure nuclear loss rates induced by the interaction of the beam halo in the crystal. Roman pots are installed in the path of the deflected particles and are equipped with a Medipix detector to reconstruct the transverse distribution of the impinging beam. Finally UA9 takes advantage of an LHC-collimator prototype installed close to the Roman pot to help in setting the beam conditions and to analyze the efficiency to deflect the beam. This paper describes in details the hardware installed to study the crystal collimation during 2010.
71 - Orel Gueta 2021
The Cherenkov Telescope Array (CTA) will be the next generation very-high-energy gamma-ray observatory. CTA is expected to provide substantial improvement in accuracy and sensitivity with respect to existing instruments thanks to a tenfold increase in the number of telescopes and their state-of-the-art design. Detailed Monte Carlo simulations are used to further optimise the number of telescopes and the array layout, and to estimate the observatory performance using updated models of the selected telescope designs. These studies are presented in this contribution for the two CTA stations located on the island of La Palma (Spain) and near Paranal (Chile) and for different operation and observation conditions.
At EuPRAXIA@SPARC_LAB, the unique combination of an advanced high-brightness RF injector and a plasma-based accelerator will drive a new multi-disciplinary user-facility. The facility, that is currently under study at INFN-LNF Laboratories (Frascati, Italy) in synergy with the EuPRAXIA collaboration, will operate the plasma-based accelerator in the external injection configuration. Since in this configuration the stability and reproducibility of the acceleration process in the plasma stage is strongly influenced by the RF-generated electron beam, the main challenge for the RF injector design is related to generating and handling high quality electron beams. In the last decades of R&D activity, the crucial role of high-brightness RF photo-injectors in the fields of radiation generation and advanced acceleration schemes has been largely established, making them effective candidates to drive plasma-based accelerators as pilots for user facilities. An RF injector consisting in a high-brightness S-band photo-injector followed by an advanced X-band linac has been proposed for the EuPRAXIA@SPARC_LAB project. The electron beam dynamics in the photo-injector has been explored by means of simulations, resulting in high-brightness, ultra-short bunches with up to 3 kA peak current at the entrance of the advanced X-band linac booster. The EuPRAXIA@SPARC_LAB high-brightness photo-injector is described here together with performance optimisation and sensitivity studies aiming to actual check the robustness and reliability of the desired working point.
60 - V. Kain 2016
Beam transfer, such as injection into or extraction from an accelerator, is one of the most critical moments in terms of machine protection in a high-intensity machine. Special equipment is used and machine protection aspects have to be taken into account in the design of the beam transfer concepts. A brief introduction of the principles of beam transfer and the equipment involved will be given in this lecture. The main concepts of machine protection for injection and extraction will be presented, with examples from the CERN SPS and LHC.
52 - E. Carrone 2016
Machine protection, as part of accelerator control systems, can be managed with a functional safety approach, which takes into account product life cycle, processes, quality, industrial standards and cybersafety. This paper will discuss strategies to manage such complexity and the related risks, with particular attention to fail-safe design and safety integrity levels, software and hardware standards, testing, and verification philosophy. It will also discuss an implementation of a machine protection system at the SLAC National Accelerator Laboratorys Linac Coherent Light Source (LCLS).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا