Do you want to publish a course? Click here

Virtual retraction and Howsons theorem in pro-$p$ groups

184   0   0.0 ( 0 )
 Added by Mark Shusterman
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We show that for every finitely generated closed subgroup $K$ of a non-solvable Demushkin group $G$, there exists an open subgroup $U$ of $G$ containing $K$, and a continuous homomorphism $tau colon U to K$ satisfying $tau(k) = k$ for every $k in K$. We prove that the intersection of a pair of finitely generated closed subgroups of a Demushkin group is finitely generated (giving an explicit bound on the number of generators). Furthermore, we show that these properties of Demushkin groups are preserved under free pro-$p$ products, and deduce that Howsons theorem holds for the Sylow subgroups of the absolute Galois group of a number field. Finally, we confirm two conjectures of Ribes, thus classifying the finitely generated pro-$p$ M. Hall groups.



rate research

Read More

113 - Ashot Minasyan 2018
If $G$ is a group, a virtual retract of $G$ is a subgroup which is a retract of a finite index subgroup. Most of the paper focuses on two group properties: property (LR), that all finitely generated subgroups are virtual retracts, and property (VRC), that all cyclic subgroups are virtual retracts. We study the permanence of these properties under commensurability, amalgams over retracts, graph products and wreath products. In particular, we show that (VRC) is stable under passing to finite index overgroups, while (LR) is not. The question whether all finitely generated virtually free groups satisfy (LR) motivates the remaining part of the paper, studying virtual free factors of such groups. We give a simple criterion characterizing when a finitely generated subgroup of a virtually free group is a free factor of a finite index subgroup. We apply this criterion to settle a conjecture of Brunner and Burns.
The authors have shown previously that every locally pro-p contraction group decomposes into the direct product of a p-adic analytic factor and a torsion factor. It has long been known that p-adic analytic contraction groups are nilpotent. We show here that the torsion factor is nilpotent too, and hence that every locally pro-p contraction group is nilpotent.
100 - Pavel Zalesskii 2018
We prove the pro-$p$ version of the Karras, Pietrowski, Solitar, Cohen and Scott result stating that a virtually free group acts on a tree with finite vertex stabilizers. If a virtually free pro-$p$ group $G$ has finite centralizes of all non-trivial torsion elements more stronger statement is proved: $G$ embeds into a free pro-$p$ product of a free pro-$p$ group and finite $p$-group. The integral $p$-adic representation theory is used in the proof; it replaces the Stallings theory of ends in the pro-$p$ case.
We study 3-dimensional Poincare duality pro-$p$ groups in the spirit of the work by Robert Bieri and Jonathan Hillmann, and show that if such a pro-$p$ group $G$ has a nontrivial finitely presented subnormal subgroup of infinite index, then either the subgroup is cyclic and normal, or the subgroup is cyclic and the group is polycyclic, or the subgroup is Demushkin and normal in an open subgroup of $G$. Also, we describe the centralizers of finitely generated subgroups of 3-dimensional Poincare duality pro-$p$ groups.
We completely describe the finitely generated pro-$p$ subgroups of the profinite completion of the fundamental group of an arbitrary $3$-manifold. We also prove a pro-$p$ analogue of the main theorem of Bass--Serre theory for finitely generated pro-$p$ groups.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا