Do you want to publish a course? Click here

Efficient, Safe, and Probably Approximately Complete Learning of Action Models

116   0   0.0 ( 0 )
 Added by Roni Stern
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

In this paper we explore the theoretical boundaries of planning in a setting where no model of the agents actions is given. Instead of an action model, a set of successfully executed plans are given and the task is to generate a plan that is safe, i.e., guaranteed to achieve the goal without failing. To this end, we show how to learn a conservative model of the world in which actions are guaranteed to be applicable. This conservative model is then given to an off-the-shelf classical planner, resulting in a plan that is guaranteed to achieve the goal. However, this reduction from a model-free planning to a model-based planning is not complete: in some cases a plan will not be found even when such exists. We analyze the relation between the number of observed plans and the likelihood that our conservative approach will indeed fail to solve a solvable problem. Our analysis show that the number of trajectories needed scales gracefully.



rate research

Read More

Creating a domain model, even for classical, domain-independent planning, is a notoriously hard knowledge-engineering task. A natural approach to solve this problem is to learn a domain model from observations. However, model learning approaches frequently do not provide safety guarantees: the learned model may assume actions are applicable when they are not, and may incorrectly capture actions effects. This may result in generating plans that will fail when executed. In some domains such failures are not acceptable, due to the cost of failure or inability to replan online after failure. In such settings, all learning must be done offline, based on some observations collected, e.g., by some other agents or a human. Through this learning, the task is to generate a plan that is guaranteed to be successful. This is called the model-free planning problem. Prior work proposed an algorithm for solving the model-free planning problem in classical planning. However, they were limited to learning grounded domains, and thus they could not scale. We generalize this prior work and propose the first safe model-free planning algorithm for lifted domains. We prove the correctness of our approach, and provide a statistical analysis showing that the number of trajectories needed to solve future problems with high probability is linear in the potential size of the domain model. We also present experiments on twelve IPC domains showing that our approach is able to learn the real action model in all cases with at most two trajectories.
The PC algorithm learns maximally oriented causal Bayesian networks. However, there is no equivalent complete algorithm for learning the structure of relational models, a more expressive generalization of Bayesian networks. Recent developments in the theory and representation of relational models support lifted reasoning about conditional independence. This enables a powerful constraint for orienting bivariate dependencies and forms the basis of a new algorithm for learning structure. We present the relational causal discovery (RCD) algorithm that learns causal relational models. We prove that RCD is sound and complete, and we present empirical results that demonstrate effectiveness.
Maintaining the stability of the modern power grid is becoming increasingly difficult due to fluctuating power consumption, unstable power supply coming from renewable energies, and unpredictable accidents such as man-made and natural disasters. As the operation on the power grid must consider its impact on future stability, reinforcement learning (RL) has been employed to provide sequential decision-making in power grid management. However, existing methods have not considered the environmental constraints. As a result, the learned policy has risk of selecting actions that violate the constraints in emergencies, which will escalate the issue of overloaded power lines and lead to large-scale blackouts. In this work, we propose a novel method for this problem, which builds on top of the search-based planning algorithm. At the planning stage, the search space is limited to the action set produced by the policy. The selected action strictly follows the constraints by testing its outcome with the simulation function provided by the system. At the learning stage, to address the problem that gradients cannot be propagated to the policy, we introduce Evolutionary Strategies (ES) with black-box policy optimization to improve the policy directly, maximizing the returns of the long run. In NeurIPS 2020 Learning to Run Power Network (L2RPN) competition, our solution safely managed the power grid and ranked first in both tracks.
In this paper, we investigate the combination of synthesis, model-based learning, and online sampling techniques to obtain safe and near-optimal schedulers for a preemptible task scheduling problem. Our algorithms can handle Markov decision processes (MDPs) that have 1020 states and beyond which cannot be handled with state-of-the art probabilistic model-checkers. We provide probably approximately correct (PAC) guarantees for learning the model. Additionally, we extend Monte-Carlo tree search with advice, computed using safety games or obtained using the earliest-deadline-first scheduler, to safely explore the learned model online. Finally, we implemented and compared our algorithms empirically against shielded deep Q-learning on large task systems.
This paper targets the efficient construction of a safety shield for decision making in scenarios that incorporate uncertainty. Markov decision processes (MDPs) are prominent models to capture such planning problems. Reinforcement learning (RL) is a machine learning technique to determine near-optimal policies in MDPs that may be unknown prior to exploring the model. However, during exploration, RL is prone to induce behavior that is undesirable or not allowed in safety- or mission-critical contexts. We introduce the concept of a probabilistic shield that enables decision-making to adhere to safety constraints with high probability. In a separation of concerns, we employ formal verification to efficiently compute the probabilities of critical decisions within a safety-relevant fragment of the MDP. We use these results to realize a shield that is applied to an RL algorithm which then optimizes the actual performance objective. We discuss tradeoffs between sufficient progress in exploration of the environment and ensuring safety. In our experiments, we demonstrate on the arcade game PAC-MAN and on a case study involving service robots that the learning efficiency increases as the learning needs orders of magnitude fewer episodes.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا