Imaging and controlling vortex dynamics in mesoscopic superconductor-normal-metal-superconductor arrays


Abstract in English

Harnessing the properties of vortices in superconductors is crucial for fundamental science and technological applications; thus, it has been an ongoing goal to locally probe and control vortices. Here, we use a scanning probe technique that enables studies of vortex dynamics in superconducting systems by leveraging the resonant behavior of a raster-scanned, magnetic-tipped cantilever. This experimental setup allows us to image and control vortices, as well as extract key energy scales of the vortex interactions. Applying this technique to lattices of superconductor island arrays on a metal, we obtain a variety of striking spatial patterns that encode information about the energy landscape for vortices in the system. We interpret these patterns in terms of local vortex dynamics and extract the relative strengths of the characteristic energy scales in the system, such as the vortex-magnetic field and vortex-vortex interaction strengths, as well as the vortex chemical potential. We also demonstrate that the relative strengths of the interactions can be tuned and show how these interactions shift with an applied bias. The high degree of tunability and local nature of such vortex imaging and control not only enable new understanding of vortex interactions, but also have potential applications in more complex systems such as those relevant to quantum computing.

Download