This paper proposes a general framework for adding linearizable iterators to a class of data structures that implement set operations. We introduce a condition on set operations, called local consistency, which informally states that set operations never make elements unreachable to a sequential iterators traversal. We show that sets with locally consistent operations can be augmented with a linearizable iterator via the framework. Our technique is broadly applicable to a variety of data structures, including hash tables and binary search trees. We apply the technique to sets taken from existing literature, prove their operations are locally consistent, and demonstrate that iterators do not significantly affect the performance of concurrent set operations.