An algebraic construction of a solution to the mean field equations on hyperelliptic Curves and its diabatic limit


Abstract in English

In this paper, we give an algebraic construction of the solution to the following mean field equation $$ Delta psi+e^{psi}=4pisum_{i=1}^{2g+2}delta_{P_{i}}, $$ on a genus $ggeq 2$ hyperelliptic curve $(X,ds^{2})$ where $ds^{2}$ is a canonical metric on $X$ and ${P_{1},cdots,P_{2g+2}}$ is the set of Weierstrass points on $X.$ Furthermore, we study the rescaled equation $$ Delta psi+gamma e^{psi}=4pigamma sum_{i=1}^{2g+2}delta_{P_{i}} $$ and its adiabatic limit at $gamma=0$.

Download