Do you want to publish a course? Click here

Unusual coexistence of negative/positive charge-transfer in mixed-valence Na$_x$Ca$_{1-x}$Cr$_2$O$_4$

87   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated the electronic structure of Na$_x$Ca$_{1-x}$Cr$_2$O$_4$ using x-ray absorption spectroscopy together with Anderson impurity model calculations with full multiplets. We show Na$_x$Ca$_{1-x}$Cr$_2$O$_4$ taking a novel mixed-valence electronic state in which the positive charge-transfer (CT) and the negative self-doped states coexist. While CaCr$_2$O$_4$ (one end member) exhibits a typical CT nature with strong covalent character, Na substitution causes a self-doped state with an oxygen hole. In NaCr$_2$O$_4$ (the other end member), positive CT and negative self-doped states coexist with equal weight. This unusual electronic state is in sharp contrast to the conventional mixed-valence description, in which the ground state can be described by the mixture of Cr$^{3+}$ ($3d^3$) and Cr$^{4+}$ ($3d^2$).



rate research

Read More

V2O3 famously features all four combinations of paramagnetic vs antiferromagnetic, and metallic vs insulating states of matter in response to %-level doping, pressure in the GPa range, and temperature below 300 K. Using time-of-flight neutron spectroscopy combined with density functional theory calculations of magnetic interactions, we have mapped and analyzed the inelastic magnetic neutron scattering cross section over a wide range of energy and momentum transfer in the chromium stabilized antiferromagnetic and paramagnetic insulating phases (AFI & PI). Our results reveal an important magnetic frustration and degeneracy of the PI phase which is relieved by the rhombohedral to monoclinic transition at $T_N=185$ K due to a significant magneto-elastic coupling. This leads to the recognition that magnetic frustration is an inherent property of the paramagnetic phase in $rm (V_{1-x}Cr_x)_2O_3$ and plays a key role in suppressing the magnetic long range ordering temperature and exposing a large phase space for the paramagnetic Mott metal-insulator transition to occur.
We have studied the electronic structure of the Ni triangular lattice in NiGa$_2$S$_4$ using photoemission spectroscopy and subsequent model calculations. The cluster-model analysis of the Ni 2$p$ core-level spectrum shows that the S 3$p$ to Ni 3$d$ charge-transfer energy is $sim$ -1 eV and the ground state is dominated by the $d^9L$ configuration ($L$ is a S 3$p$ hole). Cell perturbation analysis for the NiS$_2$ triangular lattice indicates that the strong S 3$p$ hole character of the ground state provides the enhanced superexchange interaction between the third nearest neighbor sites.
We present muon-spin rotation measurements on polycrystalline samples of the complete family of the antiferromagnetic (AF) $zigzag$ chain compounds, Na$_x$Ca$_{1-x}$V$_2$O$_4$. In this family, we explore the magnetic properties from the metallic NaV$_2$O$_4$ to the insulating CaV$_2$O$_4$. We find a critical $x_c(sim0.833)$ which separates the low and high Na-concentration dependent transition temperature and its magnetic ground state. In the $x<x_c$ compounds, the magnetic ordered phase is characterized by a single homogenous phase and the formation of incommensurate spin-density-wave order. Whereas in the $x>x_c$ compounds, multiple sub-phases appear with temperature and $x$. Based on the muon data obtained in zero external magnetic field, a careful dipolar field simulation was able to reproduce the muon behavior and indicates a modulated helical incommensurate spin structure of the metallic AF phase. The incommensurate modulation period obtained by the simulation agrees with that determined by neutron diffraction.
We present the magnetic properties of complete solid solutions of ZnCr$_2$O$_4$ and CoCr$_2$O$_4$: two well-studied oxide spinels with very different magnetic ground states. ZnCr$_2$O$_4$, with non-magnetic $d^{10}$ cations occupying the A site and magnetic $d^3$ cations on the B site, is a highly frustrated antiferromagnet. CoCr$_2$O$_4$, with magnetic $d^7$ cations (three unpaired electrons) on the A site as well, exhibits both Neel ferrimagnetism as well as commensurate and incommensurate non-collinear magnetic order. More recently, CoCr$_2$O$_4$ has been studied extensively for its polar behavior which arises from conical magnetic ordering. Gradually introducing magnetism on the A site of ZnCr$_2$O$_4$ results in a transition from frustrated antiferromagnetism to glassy magnetism at low concentrations of Co, and eventually to ferrimagnetic and conical ground states at higher concentrations. Real-space Monte-Carlo simulations of the magnetic susceptibility suggest that the first magnetic ordering transition and features of the susceptibility across $x$ are captured by near-neighbor self- and cross-couplings between the magnetic A and B atoms. We present as a part of this study, a method for displaying the temperature dependence of magnetic susceptibility in a manner which helps distinguish between compounds possessing purely antiferromagnetic interactions from compounds where other kinds of ordering are present.
In order to study the phase diagram from a microscopic viewpoint, we have measured wTF- and ZF-$mu^+$SR spectra for the Sr$_{1-x}$Ca$_x$Co$_2$P$_2$ powder samples with $x=0$, 0.2, 0.4, 0.5, 0.6, 0.8, and 1. Due to a characteristic time window and spatial resolution of $mu^+$SR, the obtained phase diagram was found to be rather different from that determined by magnetization measurements. That is, as $x$ increases from 0, a Pauli-paramagnetic phase is observed even at the lowest $T$ measured (1.8~K) until $x=0.4$, then, a spin-glass like phase appears at $0.5leq xleq0.6$, and then, a phase with wide field distribution probably due to incommensurate AF order is detected for $x=0.8$, and finally, a commensurate $A$-type AF ordered phase (for $x=1$) is stabilized below $T_{rm N}sim80~$K. Such change is most likely reasonable and connected to the shrink of the $c$-axis length with $x$, which naturally enhances the magnetic interaction between the two adjacent Co planes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا