Generation of micro-J pulses in the deep UV at MHz repetition rates


Abstract in English

Although ultraviolet (UV) light is important in many areas of science and technology, there are very few if any lasers capable of delivering wavelength-tunable ultrashort UV pulses at MHz repetition rates. Here we report the generation of deep-UV laser pulses at MHz repetition rates and mu J-energies by means of dispersive wave (DW) emission from self-compressed solitons in gas-filled single-ring hollow-core photonic crystal fiber (SR-PCF). Pulses from an ytterbium fiber laser (~300 fs) are first compressed to ~25 fs in a SR-PCF-based nonlinear compression stage, and subsequently used to pump a second SR-PCF stage for broadband DW generation in the deep UV. The UV wavelength is tunable by selecting the gas species and the pressure. At 100 kHz repetition rate, a pulse energy of 1.05 mu J was obtained at 205 nm (average power 0.1 W), and at 1.92 MHz, a pulse energy of 0.54 mu J was obtained at 275 nm (average power 1.03 W).

Download