No Arabic abstract
We report temperature (T) dependence of dc magnetization, electrical resistivity (rho(T)), and heat-capacity of rare-earth (R) compounds, Gd3RuSn6 and Tb3RuSn6, which are found to crystallize in the Yb3CoSn6-type orthorhombic structure (space group: Cmcm). The results establish that there is an onset of antiferromagnetic order near (T_N) 19 and 25 K respectively. In addition, we find that there is another magnetic transition for both the cases around 14 and 17 K respectively. In the case of the Gd compound, the spin-scattering contribution to rho is found to increase below 75 K as the material is cooled towards T_N, thereby resulting in a minimum in the plot of rho(T) unexpected for Gd based systems. Isothermal magnetization at 1.8 K reveals an upward curvature around 50 kOe. Isothermal magnetoresistance plots show interesting anomalies in the magnetically ordered state. There are sign reversals in the plot of isothermal entropy change versus T in the magnetically ordered state, indicating subtle changes in the spin reorientation with T. The results reveal that these compounds exhibit interesting magnetic properties.
Ordered double perovskite oxides of the general formula, A2BBO6, have been known for several decades to have interesting electronic and magnetic properties. However, a recent report of a spectacular negative magnetoresistance effect in a specific member of this family, namely Sr2FeMoO6, has brought this class of compounds under intense scrutiny. It is now believed that the origin of magnetism in this class of compounds is based on a novel kinetically-driven mechanism. This new mechanism is also likely to be responsible for the unusually high temperature ferromagnetism in several other systems, such as dilute magnetic semiconductors, as well as in various half-metallic ferromagnetic systems, such as Heussler alloys.
The magnetic behavior of the quaternary compounds, RCr2Si2C (R = La, Ce), has been investigated by magnetization (M) and heat-capacity (C) measurements (1.8-300 K) in the bulk polycrystals and nano forms (<1 {mu}m) obtained by high-energy balling. Our finding is that Cr appears to exhibit magnetic ordering of an itinerant type at low temperatures (<20 K) in the bulk form, as inferred from a combined look at all the data. The magnetic ordering gets gradually suppressed with increasing milling time. Evidence for a mixed-valence state of Ce for the bulk form is obtained from the tendency of magnetic susceptibility to exhibit a maximum above 300 K. However, this feature vanishes in the nano form, which exhibits a Curie-Weiss behavior above 200 K as though Ce tends towards trivalency in these fine particles; in addition, there is a weak upturn in C/T below 10 K in the bulk, which becomes very prominent in the milled Ce-based specimens at lower temperatures, as though heavy-fermion behavior gets stronger in smaller particles.
Quantum spin liquids (QSLs) are an exotic state of matter that is subject to extensive research. However, the relationship between the ubiquitous disorder and the QSL behaviors is still unclear. Here, by performing comparative experimental studies on two kagom{e}-lattice QSL candidates, Tm$_3$Sb$_3$Zn$_2$O$_{14}$ and Tm$_3$Sb$_3$Mg$_2$O$_{14}$, which are isostructural to each other but with strong and weak structural disorder, respectively, we show unambiguously that the disorder can induce spin-liquid-like features. In particular, both compounds show dominant antiferromagnetic interactions with a Curie-Weiss temperature of -17.4 and -28.7 K for Tm$_3$Sb$_3$Zn$_2$O$_{14}$ and Tm$_3$Sb$_3$Mg$_2$O$_{14}$, respectively, but remain disordered down to about 0.05 K. Specific heat results suggest the presence of gapless magnetic excitations characterized by a residual linear term. Magnetic excitation spectra obtained by inelastic neutron scattering (INS) at low temperatures display broad continua. All these observations are consistent with those of a QSL. However, we find in Tm$_3$Sb$_3$Zn$_2$O$_{14}$ which has strong disorder resulting from the random mixing of the magnetic Tm$^{3+}$ and nonmagnetic Zn$^{2+}$, that the low-energy magnetic excitations observed in the specific heat and INS measurements are substantially enhanced, compared to those of Tm$_3$Sb$_3$Mg$_2$O$_{14}$ which has much less disorder. We believe that the effective spins of the Tm$^{3+}$ ions in the Zn$^{2+}$/Mg$^{2+}$ sites give rise to the low-energy magnetic excitations, and the amount of the random occupancy determines the excitation strength. These results provide direct evidence of the mimicry of a QSL caused by disorder.
We present electronic structure calculations for the one-dimensional magnetic chain compounds Ca_3CoRhO_6 and Ca_3FeRhO_6. The calculations are based on density functional theory and the local density approximation. We use the augmented spherical wave (ASW) method. The observed alternation of low- and high-spin states along the Co-Rh and Fe-Rh chains is related to differences in the oxygen coordination of the transition metal sites. Due to strong hybridization the O 2p states are polarized, giving rise to extended localized magnetic moments centered at the high-spin sites. Strong metal-metal overlap along the chains leads to a substantial contribution of the low-spin Rh 4d_{3z^2-r^2} orbitals to the exchange coupling of the extended moments. Interestingly, this mechanism holds for both compounds, even though the coupling is ferromagnetic for the cobalt and antiferromagnetic for the iron compound. However, our results allow to understand the different types of coupling from the filling dependence of the electronic properties.
We have investigated the magnetic behavior of the nanocrystalline form of a well-known Laves phase compound, ErCo2 - the bulk form of which has been known to undergo an interesting first-order ferrimagnetic ordering near 32 K - synthesized by high-energy ball-milling. It is found that, in these nanocrystallites, Co exhibits ferromagnetic order at room temperature as inferred from the magnetization data. However, the magnetic transition temperature for Er sublattice remains essentially unaffected as though the (Er)4f-Co(3d) coupling is weak on Er magnetism. The net magnetic moment as measured at high fields, sat at 120 kOe, is significantly reduced with respect to that for the bulk in the ferrimagnetically ordered state and possible reasons are outlined. We have also compared the magnetocaloric behavior for the bulk and the nano particles.