No Arabic abstract
Many network optimization problems can be formulated as stochastic network design problems in which edges are present or absent stochastically. Furthermore, protective actions can guarantee that edges will remain present. We consider the problem of finding the optimal protection strategy under a budget limit in order to maximize some connectivity measurements of the network. Previous approaches rely on the assumption that edges are independent. In this paper, we consider a more realistic setting where multiple edges are not independent due to natural disasters or regional events that make the states of multiple edges stochastically correlated. We use Markov Random Fields to model the correlation and define a new stochastic network design framework. We provide a novel algorithm based on Sample Average Approximation (SAA) coupled with a Gibbs or XOR sampler. The experimental results on real road network data show that the policies produced by SAA with the XOR sampler have higher quality and lower variance compared to SAA with Gibbs sampler.
Stochastic network design is a general framework for optimizing network connectivity. It has several applications in computational sustainability including spatial conservation planning, pre-disaster network preparation, and river network optimization. A common assumption in previous work has been made that network parameters (e.g., probability of species colonization) are precisely known, which is unrealistic in real- world settings. We therefore address the robust river network design problem where the goal is to optimize river connectivity for fish movement by removing barriers. We assume that fish passability probabilities are known only imprecisely, but are within some interval bounds. We then develop a planning approach that computes the policies with either high robust ratio or low regret. Empirically, our approach scales well to large river networks. We also provide insights into the solutions generated by our robust approach, which has significantly higher robust ratio than the baseline solution with mean parameter estimates.
Stochastic service network designs with uncertain demand represented by a set of scenarios can be modelled as a large-scale two-stage stochastic mixed-integer program (SMIP). The progressive hedging algorithm (PHA) is a decomposition method for solving the resulting SMIP. The computational performance of the PHA can be greatly enhanced by decomposing according to scenario bundles instead of individual scenarios. At the heart of bundle-based decomposition is the method for grouping the scenarios into bundles. In this paper, we present a fuzzy c-means-based scenario bundling method to address this problem. Rather than full membership of a bundle, which is typically the case in existing scenario bundling strategies such as k-means, a scenario has partial membership in each of the bundles and can be assigned to more than one bundle in our method.
We present a new method for sampling rare and large fluctuations in a non-equilibrium system governed by a stochastic partial differential equation (SPDE) with additive forcing. To this end, we deploy the so-called instanton formalism that corresponds to a saddle-point approximation of the action in the path integral formulation of the underlying SPDE. The crucial step in our approach is the formulation of an alternative SPDE that incorporates knowledge of the instanton solution such that we are able to constrain the dynamical evolutions around extreme flow configurations only. Finally, a reweighting procedure based on the Girsanov theorem is applied to recover the full distribution function of the original system. The entire procedure is demonstrated on the example of the one-dimensional Burgers equation. Furthermore, we compare our method to conventional direct numerical simulations as well as to Hybrid Monte Carlo methods. It will be shown that the instanton-based sampling method outperforms both approaches and allows for an accurate quantification of the whole probability density function of velocity gradients from the core to the very far tails.
We investigate finite stochastic partial monitoring, which is a general model for sequential learning with limited feedback. While Thompson sampling is one of the most promising algorithms on a variety of online decision-making problems, its properties for stochastic partial monitoring have not been theoretically investigated, and the existing algorithm relies on a heuristic approximation of the posterior distribution. To mitigate these problems, we present a novel Thompson-sampling-based algorithm, which enables us to exactly sample the target parameter from the posterior distribution. Besides, we prove that the new algorithm achieves the logarithmic problem-dependent expected pseudo-regret $mathrm{O}(log T)$ for a linearized variant of the problem with local observability. This result is the first regret bound of Thompson sampling for partial monitoring, which also becomes the first logarithmic regret bound of Thompson sampling for linear bandits.
The process algebra HYPE was recently proposed as a fine-grained modelling approach for capturing the behaviour of hybrid systems. In the original proposal, each flow or influence affecting a variable is modelled separately and the overall behaviour of the system then emerges as the composition of these flows. The discrete behaviour of the system is captured by instantaneous actions which might be urgent, taking effect as soon as some activation condition is satisfied, or non-urgent meaning that they can tolerate some (unknown) delay before happening. In this paper we refine the notion of non-urgent actions, to make such actions governed by a probability distribution. As a consequence of this we now give HYPE a semantics in terms of Transition-Driven Stochastic Hybrid Automata, which are a subset of a general class of stochastic processes termed Piecewise Deterministic Markov Processes.