Supernova Neutrino in a Strangeon Star Model


Abstract in English

The neutrino burst detected during supernova SN1987A is explained in a strangeon star model, in which it is proposed that a pulsar-like compact object is composed of strangeons (strangeon: an abbreviation of strange nucleon). A nascent strangeon stars initial internal energy is calculated, with the inclusion of pion excitation (energy around 10^53 erg, comparable to the gravitational binding energy of a collapsed core). A liquid-solid phase transition at temperature ~ 1-2 MeV may occur only a few ten-seconds after core-collapse, and the thermal evolution of strangeon star is then modeled. It is found that the neutrino burst observed from SN 1987A could be re-produced in such a cooling model.

Download