No Arabic abstract
The neutrino burst detected during supernova SN1987A is explained in a strangeon star model, in which it is proposed that a pulsar-like compact object is composed of strangeons (strangeon: an abbreviation of strange nucleon). A nascent strangeon stars initial internal energy is calculated, with the inclusion of pion excitation (energy around 10^53 erg, comparable to the gravitational binding energy of a collapsed core). A liquid-solid phase transition at temperature ~ 1-2 MeV may occur only a few ten-seconds after core-collapse, and the thermal evolution of strangeon star is then modeled. It is found that the neutrino burst observed from SN 1987A could be re-produced in such a cooling model.
Pulsar-like compact stars provide us a unique laboratory to explore properties of dense matter at supra-nuclear densities. One of the models for pulsar-like stars is that they are totally composed of strangeons, and in this paper we studied the pulsar glitches in a strangeon star model. Strangeon stars would be solidified during cooling, and the solid stars would be natural to have glitches as the result of starquakes. Based on the starquake model established before, we proposed that when the starquake occurs, the inner motion of the star which changes the moment of inertia and has impact on the glitch sizes, is divided into plastic flow and elastic motion. The plastic flow which is induced in the fractured part of the outer layer, would move tangentially to redistribute the matter of the star and would be hard to recover. The elastic motion, on the other hand, changes its shape and would recover significantly. Under this scenario, we could understand the behaviors of glitches without significant energy releasing, including the Crab and the Vela pulsars, in an uniform model. We derive the recovery coefficient as a function of glitch size, as well as the time interval between two successive glitches as the function of the released stress. Our results show consistency with observational data under reasonable ranges of parameters. The implications on the oblateness of the Crab and the Vela pulsars are discussed.
Glitch is supposed to be a useful probe into pulsars interior, but the underlying physics remains puzzling. The glitch activity may reflect a lower limit of the crustal moment of inertia in conventional neutron star models. Nevertheless, its statistical feature could also be reproduced in the strangeon star model, which is focused here. We formulate the glitch activity of normal radio pulsars under the framework of starquake of solid strangeon star model, the shear modulus of strangeon matter is constrained to be $musimeq 3times10^{34}~rm erg/cm^{3}$, consistent with previous work. Nevertheless, about ten times the shift in oblateness accumulated during glitch interval is needed to fulfill the statistical observations. The fact that typical glitch sizes of two rapidly evolving pulsars (the Crab pulsar and PSR B0540-69) are about two orders of magnitude lower than that of the Vela pulsar, significantly lower than the oblateness change they can supply, indicates probably that only a part of oblateness change is relieved when a pulsar is young. The unreleased oblateness and stress may relax as compensation in the following evolution. The small glitch sizes and low glitch activity of the Crab pulsar can be explained simultaneously in this phenomenological model. Finally, we obtain energy release to be $Delta Esim 2.4times 10^{40}~rm erg$ and $Delta Esim 4.2times 10^{41}~rm erg$ for typical glitch size of $Delta u/ usim 10^{-6}$ (Vela-like) and $sim 10^{-8}$ (Crab-like). The upcoming SKA may test this model through the energy release and the power-law relation between the reduced recovery coefficient $Q/|dot u|^{1/2}$ and $Delta u/ u$.
Inspired by various astrophysical phenomenons, it was suggested that pulsar-like compact stars may in fact be strangeon stars, comprised entirely of strangeons (quark-clusters with three-light-flavor symmetry) and a small amount of electrons. To examine such possibilities, in this work we propose a linked bag model, which can be adopted for strong condensed matter in both 2-flavoured (nucleons) and 3-flavoured (hyperons, strangeons, etc.) scenarios. The model parameters are calibrated to reproduce the saturation properties of nuclear matter, which are later applied to hyperonic matter and strangeon matter. The obtained energy per baryon of strangeon matter is reduced if we adopt larger quark numbers inside a strangeon, which stiffens the equation of state and consequently increases the maximum mass of strangeon stars. In a large parameter space, the maximum mass and tidal deformability of strangeon stars predicted in the linked bag model are consistent with the current astrophysical constraints. It is found that the maximum mass of strangeon stars can be as large as $sim 2.5M_odot$, while the tidal deformability of a $1.4M_odot$ strangeon star lies in the range of $180lesssim Lambda_{1.4} lesssim 340$. More refined theoretical efforts as well as observational tests to these results are necessary in the future.
A dense neutrino medium such as that inside a core-collapse supernova can experience collective flavor conversion or oscillations because of the neutral-current weak interaction among the neutrinos. This phenomenon has been studied in a restricted, stationary supernova model which possesses the (spatial) spherical symmetry about the center of the supernova and the (directional) axial symmetry around the radial direction. Recently it has been shown that these spatial and directional symmetries can be broken spontaneously by collective neutrino oscillations. In this paper we analyze the neutrino flavor instabilities in a time-dependent supernova model. Our results show that collective neutrino oscillations start at approximately the same radius in both the stationary and time-dependent supernova models unless there exist very rapid variations in local physical conditions on timescales of a few microseconds or shorter. Our results also suggest that collective neutrino oscillations can vary rapidly with time in the regimes where they do occur which need to be studied in time-dependent supernova models.
Observation of supernovae (SN) through their neutrino emission is a fundamental point to understand both SN dynamics and neutrino physical properties. JUNO is a 20kton liquid scintillator detector, under construction in Jiangmen, China. The main aim of the experiment is to determine neutrino mass hierarchy by precisely measuring the energy spectrum of reactor electron antineutrinos. However due to its properties, JUNO has the capability of detecting a high statistics of SN events too. Existing data from SN neutrino consists only of 24 events coming from the SN 1987A,the detection of a SN burst in JUNO at $sim 10 kpc$ will yield $sim 5 x 10^{3}$ inverse beta decay (IBD) events from electron antineutrinos, about 1500 from proton elastic scattering (pES) above the threshold of 0.2 MeV, about 400 from electron elastic scattering (eES), plus several hundreds on other CC and NC interaction channels from all neutrino species.