Disorder-induced dephasing in backscattering-free quantum transport


Abstract in English

We analyze the disorder-perturbed transport of quantum states in the absence of backscattering. This comprises, for instance, the propagation of edge-mode wave packets in topological insulators, or the propagation of photons in inhomogeneous media. We quantify the disorder-induced dephasing, which we show to be bound. Moreover, we identify a gap condition to remain in the backscattering-free regime despite disorder-induced momentum broadening. Our analysis comprises the full disorder-averaged quantum state, on the level of both populations and coherences, appreciating states as potential carriers of quantum information. The well-definedness of states is guaranteed by our treatment of the nonequilibrium dynamics with Lindblad master equations.

Download