Role of anisotropic strength and stiffness in governing the initiation and propagation of yielding in polycrystalline solids


Abstract in English

The ratio of directional strength-to-stiffness is important in governing the relative order in which individual crystals within a polycrystalline aggregate will yield as the aggregate is loaded. In this paper, a strength-to-stiffness parameter is formulated for multiaxial loading that extends the development of Wong and Dawson for uniaxial loading. Building on the principle of strength-to-stiffness, a methodology for predicting the macroscopic stresses at which elements in a finite element mesh yield is developed. This analysis uses elastic strain data from one increment of a purely elastic finite element simulation to make the prediction, given knowledge of the single-crystal yield surface. Simulations of austenitic strainless steel AL6XN are used to demonstrated the effectivness of the strength-to-stiffness parameter and yield prediction methodology.

Download