Do you want to publish a course? Click here

Aqua MODIS Electronic Crosstalk on SMWIR Bands 20 to 26

53   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aqua MODIS Moon images obtained with bands 20 to 26 (3.66 - 4.55 and 1.36 - 1.39 $mu$m) during scheduled lunar events show evidence of electronic crosstalk contamination of the response of detector 1. In this work, we determined the sending bands for each receiving band. We found that the contaminating signal originates, in all cases, from the detector 10 of the corresponding sending band and that the signals registered by the receiving and sending detectors are always read out in immediate sequence. We used the lunar images to derive the crosstalk coefficients, which were then applied in the correction of electronic crosstalk striping artifacts present in L1B images, successfully restoring product quality.



rate research

Read More

Aqua MODIS, unlike its predecessor on board the Terra spacecraft, had always been thought to have been spared from significant deleterious impacts of electronic crosstalk on its imagery. However, recent efforts brought to our attention the presence of striping artifacts in Aqua MODIS images from band 24 (4.47$mu$m), which upon further inspection proved to have a noticeable impact on the quality of the L1B product and to have been present since the beginning of the mission, in 2002. Using images of the Moon from scheduled lunar observations, we linked the artifacts with electronic crosstalk contamination of the response of detector 1 of band 24 by signal sent from the detector 10 of band 26 (1.375$mu$m), a neighboring band in the same focal plane assembly. In this paper, we report on these findings, the artifact mitigation strategy adopted by us, and on our success in restoring band 24 detector 1 behavior and image quality.
104 - G. Ruffini , F. Soulat 2004
In this paper we focus on the microwave bistatic scattering process, with the aim of deriving an expression for the interferometric complex field auto-correlation function from a static platform. We start from the Fresnel integral and derive the auto-correlation function in the Fraunhofer and Modified Fraunhofer regime. The autocorrelation function at short times can be expressed as a Gaussian with a direction dependent time scale. The directional modulation is a function of the angle between the scattering direction and the wave direction. The obtained relation can be used for directional sea state estimation using one or more GNSS-R coastal receivers.
The Gamma-Ray Observation of Winter Thunderclouds (GROWTH) collaboration has been performing observation campaigns of high-energy radiation in coastal areas of Japan Sea. Winter thunderstorms in Japan have unique characteristics such as frequent positive-polarity discharges, large discharge current, and low cloud bases. These features allow us to observe both long-duration gamma-ray bursts and lightning-triggered short-duration bursts at sea level. In 2015, we started a mapping observation project using multiple detectors at several new observation sites. We have developed brand-new portable gamma-ray detectors and deployed in the Kanazawa and Komatsu areas as well as the existing site at Kashiwazaki. During three winter seasons from 2015, we have detected 27 long-duration bursts and 8 short-duration bursts. The improved observation network in Kashiwazaki enables us to discover that the short-duration bursts are attributed to atmospheric photonuclear reactions triggered by a downward terrestrial gamma-ray flash. Collaborating with electric-field and radio-band measurements, we have also revealed a relation between abrupt termination of a long-duration burst and a lightning discharge. We demonstrate that the mapping observation project has been providing us clues to understand high-energy atmospheric phenomena associated with thunderstorm activities.
During a winter thunderstorm on November 24, 2017, a downward terrestrial gamma-ray flash took place and triggered photonuclear reactions with atmospheric nitrogen and oxygen nuclei, coincident with a lightning discharge at the Kashiwazaki-Kariwa nuclear power station in Japan. We directly detected neutrons produced by the photonuclear reactions with gadolinium orthosilicate scintillation crystals installed at sea level. Two gadolinium isotopes included in the scintillation crystals, $^{155}$Gd and $^{157}$Gd, have large cross-sections of neutron captures to thermal neutrons such as $^{155}$Gd(n,$gamma$)$^{156}$Gd and $^{157}$Gd(n,$gamma$)$^{158}$Gd. De-excitation gamma rays from $^{156}$Gd and $^{158}$Gd are self-absorbed in the scintillation crystals, and make spectral-line features which can be distinguished from other non-neutron signals. The neutron burst lasted for $sim$100~ms, and neutron fluences are estimated to be $>$52 and $>$31~neutrons~cm$^{-2}$ at two observation points inside the power plant. Gadolinium orthosilicate scintillators work as valid detectors for thermal neutrons in lightning.
We designed, developed, and deployed a distributed sensor network aiming at observing high-energy ionizing radiation, primarily gamma rays, from winter thunderclouds and lightning in coastal areas of Japan. Starting in 2015, we have installed, in total, more than 15 units of ground-based detector system in Ishikawa Prefecture and Niigata Prefecture, and accumulated 551 days of observation time in four winter seasons from late 2015 to early 2019. In this period, our system recorded 51 gamma-ray radiation events from thundercloud and lightning. Highlights of science results obtained from this unprecedented amount of data include the discovery of photonuclear reaction in lightning which produces neutrons and positrons along with gamma rays, and deeper insights into the life cycle of a particle-acceleration and gamma-ray-emitting region in a thundercloud. The present paper reviews objective, methodology, and results of our experiment, with a stress on its instrumentation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا