No Arabic abstract
Future large-scale surveys with high resolution imaging will provide us with a few $10^5$ new strong galaxy-scale lenses. These strong lensing systems however will be contained in large data amounts which are beyond the capacity of human experts to visually classify in a unbiased way. We present a new strong gravitational lens finder based on convolutional neural networks (CNNs). The method was applied to the Strong Lensing challenge organised by the Bologna Lens Factory. It achieved first and third place respectively on the space-based data-set and the ground-based data-set. The goal was to find a fully automated lens finder for ground-based and space-based surveys which minimizes human inspect. We compare the results of our CNN architecture and three new variations (invariant views and residual) on the simulated data of the challenge. Each method has been trained separately 5 times on 17 000 simulated images, cross-validated using 3 000 images and then applied to a 100 000 image test set. We used two different metrics for evaluation, the area under the receiver operating characteristic curve (AUC) score and the recall with no false positive ($mathrm{Recall}_{mathrm{0FP}}$). For ground based data our best method achieved an AUC score of $0.977$ and a $mathrm{Recall}_{mathrm{0FP}}$ of $0.50$. For space-based data our best method achieved an AUC score of $0.940$ and a $mathrm{Recall}_{mathrm{0FP}}$ of $0.32$. On space-based data adding dihedral invariance to the CNN architecture diminished the overall score but achieved a higher no contamination recall. We found that using committees of 5 CNNs produce the best recall at zero contamination and consistenly score better AUC than a single CNN. We found that for every variation of our CNN lensfinder, we achieve AUC scores close to $1$ within $6%$.
We explore the effectiveness of deep learning convolutional neural networks (CNNs) for estimating strong gravitational lens mass model parameters. We have investigated a number of practicalities faced when modelling real image data, such as how network performance depends on the inclusion of lens galaxy light, the addition of colour information and varying signal-to-noise. Our CNN was trained and tested with strong galaxy-galaxy lens images simulated to match the imaging characteristics of the Large Synoptic Survey Telescope (LSST) and Euclid. For images including lens galaxy light, the CNN can recover the lens model parameters with an acceptable accuracy, although a 34 per cent average improvement in accuracy is obtained when lens light is removed. However, the inclusion of colour information can largely compensate for the drop in accuracy resulting from the presence of lens light. While our findings show similar accuracies for single epoch Euclid VIS and LSST r-band datasets, we find a 24 per cent increase in accuracy by adding g- and i-band images to the LSST r-band without lens light and a 20 per cent increase with lens light. The best network performance is obtained when it is trained and tested on images where lens light exactly follows the mass, but when orientation and ellipticity of the light is allowed to differ from those of the mass, the network performs most consistently when trained with a moderate amount of scatter in the difference between the mass and light profiles.
We use convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to estimate the parameters of strong gravitational lenses from interferometric observations. We explore multiple strategies and find that the best results are obtained when the effects of the dirty beam are first removed from the images with a deconvolution performed with an RNN-based structure before estimating the parameters. For this purpose, we use the recurrent inference machine (RIM) introduced in Putzky & Welling (2017). This provides a fast and automated alternative to the traditional CLEAN algorithm. We obtain the uncertainties of the estimated parameters using variational inference with Bernoulli distributions. We test the performance of the networks with a simulated test dataset as well as with five ALMA observations of strong lenses. For the observed ALMA data we compare our estimates with values obtained from a maximum-likelihood lens modeling method which operates in the visibility space and find consistent results. We show that we can estimate the lensing parameters with high accuracy using a combination of an RNN structure performing image deconvolution and a CNN performing lensing analysis, with uncertainties less than a factor of two higher than those achieved with maximum-likelihood methods. Including the deconvolution procedure performed by RIM, a single evaluation can be done in about a second on a single GPU, providing a more than six orders of magnitude increase in analysis speed while using about eight orders of magnitude less computational resources compared to maximum-likelihood lens modeling in the uv-plane. We conclude that this is a promising method for the analysis of mm and cm interferometric data from current facilities (e.g., ALMA, JVLA) and future large interferometric observatories (e.g., SKA), where an analysis in the uv-plane could be difficult or unfeasible.
The vast quantity of strong galaxy-galaxy gravitational lenses expected by future large-scale surveys necessitates the development of automated methods to efficiently model their mass profiles. For this purpose, we train an approximate Bayesian convolutional neural network (CNN) to predict mass profile parameters and associated uncertainties, and compare its accuracy to that of conventional parametric modelling for a range of increasingly complex lensing systems. These include standard smooth parametric density profiles, hydrodynamical EAGLE galaxies and the inclusion of foreground mass structures, combined with parametric sources and sources extracted from the Hubble Ultra Deep Field. In addition, we also present a method for combining the CNN with traditional parametric density profile fitting in an automated fashion, where the CNN provides initial priors on the latters parameters. On average, the CNN achieved errors 19 $pm$ 22 per cent lower than the traditional methods blind modelling. The combination method instead achieved 27 $pm$ 11 per cent lower errors over the blind modelling, reduced further to 37 $pm$ 11 per cent when the priors also incorporated the CNN-predicted uncertainties, with errors also 17 $pm$ 21 per cent lower than the CNN by itself. While the CNN is undoubtedly the fastest modelling method, the combination of the two increases the speed of conventional fitting alone by factors of 1.73 and 1.19 with and without CNN-predicted uncertainties, respectively. This, combined with greatly improved accuracy, highlights the benefits one can obtain through combining neural networks with conventional techniques in order to achieve an efficient automated modelling approach.
We performed a search for strong lens galaxy-scale systems in the first data release of the Dark Energy Survey (DES), from a color-selected parent sample of 18~745~029 Luminous Red Galaxies (LRGs). Our search was based on a Convolutional Neural Network (CNN) to grade our LRG selection with values between 0 (non-lens) and 1 (lens). Our training set was data-driven, i.e. using lensed sources taken from HST COSMOS images and where the light distribution of the lens plane was taken directly from DES images of our LRGs. A total of 76~582 cutouts obtained a score above 0.9. These were visually inspected and resulted in two catalogs. The first one contains 405 lens candidates, where 90 present clear lensing features and counterparts, while the others 315 require more evidence, such as higher resolution images or spectra to be conclusive. A total of 186 candidates were totally new identified in this search. The second catalog includes 539 ring galaxy candidates that will be useful to train CNNs against this type of false positives. For the 90 best lens candidates we carried out color-based deblending of the lens and source light without fitting any analytical profile to the data. The method turned out to be very efficient in the deblending, even for very compact objects and for objects with very complex morphology. Finally, from the 90 best lens candidates we selected 52 systems having one single deflector, to test an automated modeling pipeline which successfully modeled 79% of the sample within an acceptable amount of computing time.
Convolutional Neural Networks (ConvNets) are one of the most promising methods for identifying strong gravitational lens candidates in survey data. We present two ConvNet lens-finders which we have trained with a dataset composed of real galaxies from the Kilo Degree Survey (KiDS) and simulated lensed sources. One ConvNet is trained with single textit{r}-band galaxy images, hence basing the classification mostly on the morphology. While the other ConvNet is trained on textit{g-r-i} composite images, relying mostly on colours and morphology. We have tested the ConvNet lens-finders on a sample of 21789 Luminous Red Galaxies (LRGs) selected from KiDS and we have analyzed and compared the results with our previous ConvNet lens-finder on the same sample. The new lens-finders achieve a higher accuracy and completeness in identifying gravitational lens candidates, especially the single-band ConvNet. Our analysis indicates that this is mainly due to improved simulations of the lensed sources. In particular, the single-band ConvNet can select a sample of lens candidates with $sim40%$ purity, retrieving 3 out of 4 of the confirmed gravitational lenses in the LRG sample. With this particular setup and limited human intervention, it will be possible to retrieve, in future surveys such as Euclid, a sample of lenses exceeding in size the total number of currently known gravitational lenses.