Do you want to publish a course? Click here

Semantics of higher inductive types

81   0   0.0 ( 0 )
 Added by Michael Shulman
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Higher inductive types are a class of type-forming rules, introduced to provide basic (and not-so-basic) homotopy-theoretic constructions in a type-theoretic style. They have proven very fruitful for the synthetic development of homotopy theory within type theory, as well as in formalizing ordinary set-level mathematics in type theory. In this article, we construct models of a wide range of higher inductive types in a fairly wide range of settings. We introduce the notion of cell monad with parameters: a semantically-defined scheme for specifying homotopically well-behaved notions of structure. We then show that any suitable model category has *weakly stable typal initial algebras* for any cell monad with parameters. When combined with the local universes construction to obtain strict stability, this specializes to give models of specific higher inductive types, including spheres, the torus, pushout types, truncations, the James construction, and general localisations. Our results apply in any sufficiently nice Quillen model category, including any right proper, simplicially locally cartesian closed, simplicial Cisinski model category (such as simplicial sets) and any locally presentable locally cartesian closed category (such as sets) with its trivial model structure. In particular, any locally presentable locally cartesian closed $(infty,1)$-category is presented by some model category to which our results apply.



rate research

Read More

109 - Andrew Swan 2020
We define a class of higher inductive types that can be constructed in the category of sets under the assumptions of Zermelo-Fraenkel set theory without the axiom of choice or the existence of uncountable regular cardinals. This class includes the example of unordered trees of any arity.
Higher inductive-inductive types (HIITs) generalize inductive types of dependent type theories in two ways. On the one hand they allow the simultaneous definition of multiple sorts that can be indexed over each other. On the other hand they support equality constructors, thus generalizing higher inductive types of homotopy type theory. Examples that make use of both features are the Cauchy real numbers and the well-typed syntax of type theory where conversion rules are given as equality constructors. In this paper we propose a general definition of HIITs using a small type theory, named the theory of signatures. A context in this theory encodes a HIIT by listing the constructors. We also compute notions of induction and recursion for HIITs, by using variants of syntactic logical relation translations. Building full categorical semantics and constructing initial algebras is left for future work. The theory of HIIT signatures was formalised in Agda together with the syntactic translations. We also provide a Haskell implementation, which takes signatures as input and outputs translation results as valid Agda code.
158 - Jiri Adamek 2011
Higher-order recursion schemes are recursive equations defining new operations from given ones called terminals. Every such recursion scheme is proved to have a least interpreted semantics in every Scotts model of lambda-calculus in which the terminals are interpreted as continuous operations. For the uninterpreted semantics based on infinite lambda-terms we follow the idea of Fiore, Plotkin and Turi and work in the category of sets in context, which are presheaves on the category of finite sets. Fiore et al showed how to capture the type of variable binding in lambda-calculus by an endofunctor Hlambda and they explained simultaneous substitution of lambda-terms by proving that the presheaf of lambda-terms is an initial Hlambda-monoid. Here we work with the presheaf of rational infinite lambda-terms and prove that this is an initial iterative Hlambda-monoid. We conclude that every guarded higher-order recursion scheme has a unique uninterpreted solution in this monoid.
This paper introduces an expressive class of indexed quotient-inductive types, called QWI types, within the framework of constructive type theory. They are initial algebras for indexed families of equational theories with possibly infinitary operators and equations. We prove that QWI types can be derived from quotient types and inductive types in the type theory of toposes with natural number object and universes, provided those universes satisfy the Weakly Initial Set of Covers (WISC) axiom. We do so by constructing QWI types as colimits of a family of approximations to them defined by well-founded recursion over a suitable notion of size, whose definition involves the WISC axiom. We developed the proof and checked it using the Agda theorem prover.
122 - Michael Shulman 2016
This is an introduction to Homotopy Type Theory and Univalent Foundations for philosophers, written as a chapter for the book Categories for the Working Philosopher (ed. Elaine Landry)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا