No Arabic abstract
We explore the response of Ir $5d$ orbitals to pressure in $beta$-$mathrm{Li_2IrO_3}$, a hyperhoneycomb iridate in proximity to a Kitaev quantum spin liquid (QSL) ground state. X-ray absorption spectroscopy reveals a reconstruction of the electronic ground state below 2 GPa, the same pressure range where x-ray magnetic circular dichroism shows an apparent collapse of magnetic order. The electronic reconstruction, which manifests a reduction in the effective spin-orbit (SO) interaction in $5d$ orbitals, pushes $beta$-$mathrm{Li_2IrO_3}$ further away from the pure $J_{rm eff}=1/2$ limit. Although lattice symmetry is preserved across the electronic transition, x-ray diffraction shows a highly anisotropic compression of the hyperhoneycomb lattice which affects the balance of bond-directional Ir-Ir exchange interactions driven by spin-orbit coupling at Ir sites. An enhancement of symmetric anisotropic exchange over Kitaev and Heisenberg exchange interactions seen in theoretical calculations that use precisely this anisotropic Ir-Ir bond compression provides one possible route to realization of a QSL state in this hyperhoneycomb iridate at high pressures.
We have used resonant inelastic x-ray scattering to reveal optical magnons in a honeycomb lattice iridate $alpha$-Li$_{2}$IrO$_{3}$. The spectrum in the energy region 20-25 meV exhibits momentum dependence, of which energy is highest at the location of the magnetic Bragg peak, ($textit{h}, textit{k}$) = ($pm$0.32, 0), and lowered toward (0, 0) and ($pm$1, 0). We compare our data with a linear spin-wave theory based on a generic nearest-neighbor spin model. We find that a dominant bond-directional Kitaev interaction of order 20 meV is required to explain the energy scale observed in our study. The observed excitations are understood as stemming from optical magnon modes whose intensity is modulated by a structure factor, resulting in the apparent momentum dependence. We also observed diffuse magnetic scattering arising from the short-range magnetic correlation well above $textit{T}_{N}$. In contrast to Na$_{2}$IrO$_{3}$, this diffuse scattering lacks the $C_3$ rotational symmetry of the honeycomb lattice, suggesting that the bond anisotropy is far from negligible in $alpha$-Li$_{2}$IrO$_{3}$.
A pressure-induced collapse of magnetic ordering in $beta$-Li$_2$IrO$_3$ at $P_msim1.5- 2$ GPa has previously been interpreted as evidence for possible emergence of spin liquid states in this hyperhoneycomb iridate, raising prospects for experimental realizations of the Kitaev model. Based on structural data obtained at emph{room temperature}, this magnetic transition is believed to originate in small lattice perturbations that preserve crystal symmetry, and related changes in bond-directional anisotropic exchange interactions. Here we report on the evolution of the crystal structure of $beta$-Li$_2$IrO$_3$ under pressure at low temperatures ($Tleq50$ K) and show that the suppression of magnetism coincides with a change in lattice symmetry involving Ir-Ir dimerization. The critical pressure for dimerization shifts from 4.4(2) GPa at room temperature to $sim1.5-2$ GPa below 50 K. While a direct $Fddd rightarrow C2/c$ transition is observed at room temperature, the low temperature transitions involve new as well as coexisting dimerized phases. Further investigation of the Ir ($L_3$/$L_2$) isotropic branching ratio in x-ray absorption spectra indicates that the previously reported departure of the electronic ground state from a $J_{rm{eff}}=1/2$ state is closely related to the onset of dimerized phases. In essence, our results suggest that the predominant mechanism driving the collapse of magnetism in $beta$-Li$_2$IrO$_3$ is the pressure-induced formation of Ir$_2$ dimers in the hyperhoneycomb network. The results further confirm the instability of the $J_{rm{eff}}=1/2$ moments and related non-collinear spiral magnetic ordering against formation of dimers in the low-temperature phase of compressed $beta$-Li$_2$IrO$_3$.
Hyperhoneycomb iridate $beta$-Li$_2$IrO$_3$ is a three-dimensional analogue of two-dimensional honeycomb iridates, such as $alpha$-Li$_2$IrO$_3$, which recently appeared as another playground for the physics of Kitaev-type spin liquid. $beta$-Li$_2$IrO$_3$ shows a non-collinear spiral ordering of spin-orbital-entangled $J_{rm eff}$ = 1/2 moments at low temperature, which is known to be suppressed under a pressure of $sim$2 GPa. With further increase of pressure, a structural transition is observed at $P_{rm S}$ $sim$ 4 GPa at room temperature. Using the neutron powder diffraction technique, the crystal structure in the high-pressure phase of $beta$-Li$_2$IrO$_3$ above $P_{rm S}$ was refined, which indicates the formation of Ir$_2$ dimers on the zig-zag chains, with the Ir-Ir distance even shorter than that of metallic Ir. We argue that the strong dimerization stabilizes the bonding molecular orbital state comprising the two local $d_{zx}$-orbitals on the Ir-O$_2$-Ir bond plane, which conflicts with the equal superposition of $d_{xy}$-, $d_{yz}$- and $d_{zx}$- orbitals in the $J_{rm eff}$ = 1/2 wave function produced by strong spin-orbit coupling. The results of resonant inelastic x-ray scattering (RIXS) measurements and the electronic structure calculations are fully consistent with the collapse of the $J_{rm eff}$ = 1/2 state. A subtle competition of various electronic phases is universal in honeycomb-based Kitaev materials.
We report a polarized Raman scattering study of the lattice dynamics of $beta$-Li$_2$IrO$_3$ under hydrostatic pressures up to 7.62 GPa. At ambient pressure, $beta$-Li$_2$IrO$_3$ exhibits the hyperhoneycomb crystal structure and a magnetically ordered state of spin-orbit entangled Jeff = 1/2 moments that is strongly influenced by bond-directional (Kitaev) exchange interactions. At a critical pressure of ~ 4.1 GPa, the phonon spectrum changes abruptly consistent with the reported structural transition into a monoclinic, dimerized phase. A comparison to the phonon spectra obtained from density functional calculations shows reasonable overall agreement. The calculations also indicate that the high-pressure phase is a nonmagnetic insulator driven by the formation of Ir-Ir dimer bonds. Our results thus indicate a strong sensitivity of the electronic properties of $beta$-Li$_2$IrO$_3$ to the pressure-induced structural transition.
We have studied polycrystalline Yb4LiGe4, a ternary variant of the R5T4 family of layered compounds characterized by a very strong coupling between the magnetic and crystallographic degrees of freedom. The system is mixed valent, with non-magnetic Yb2+ and magnetic Yb3+ present, and is characterized by coexisting ferromagnetic and antiferromagnetic correlations. We present measurements of resistivity, AC-susceptibility, specific heat, and muon spin relaxation (muSR), below 1 K. The low temperature measurements suggest a transition to a mesoscopically inhomogeneous magnetically ordered state below 2 K characterized by fluctuations well below the ordering temperature. This unusual state is believed to result from the enhanced two-dimensionality produced by Li substitution and frustration effects inherent in the Yb sub-lattice geometry.