Do you want to publish a course? Click here

2D simulation of helical flux compression generator

59   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Diverse approaches to HFCGs inductance,resistance and armature expansion calculating are evaluated. Comparison of simulated and experimentally obtained results is provided. Validity criteria for different simulation models are proposed. Consideration of armature acceleration under the pressure of detonation products is shown to be beneficial for accuracy of HFCG simulation. Control of HFCG temperature during simulation enables detecting critical points of system operation.



rate research

Read More

101 - B. M. Garcia 2021
A fusion boundary-plasma domain is defined by axisymmetric magnetic surfaces where the geometry is often complicated by the presence of one or more X-points; and modeling boundary plasmas usually relies on computational grids that account for the magnetic field geometry. The new grid generator INGRID (Interactive Grid Generator) presented here is a Python-based code for calculating grids for fusion boundary plasma modeling, for a variety of configurations with one or two X-points in the domain. Based on a given geometry of the magnetic field, INGRID first calculates a skeleton grid which consists of a small number of quadrilateral patches; then it puts a subgrid on each of the patches, and joins them in a global grid. This domain partitioning strategy makes possible a uniform treatment of various configurations with one or two X-points in the domain. This includes single-null, double-null, and other configurations with two X-points in the domain. The INGRID design allows generating grids either interactively, via a parameter-file driven GUI, or using a non-interactive script-controlled workflow. Results of testing demonstrate that INGRID is a flexible, robust, and user-friendly grid-generation tool for fusion boundary-plasma modeling.
Curvature-driven turbulence in a helical open-field-line plasma is investigated using electrostatic five-dimensional gyrokinetic continuum simulations in an all-bad-curvature helical-slab geometry. Parameters for a National Spherical Torus Experiment scrape-off-layer plasma are used in the model. The formation and convective radial transport of plasma blobs is observed, and it is shown that the radial particle-transport levels are several times higher than diffusive Bohm-transport estimates. By reducing the strength of the poloidal magnetic field, the profile of the heat flux to the divertor plate is observed to broaden.
Helical and azimuthal magnetorotational instabilities operate in rotating magnetized flows with relatively steep negative or extremely steep positive shear. The corresponding lower and upper Liu limits of the shear, which determine the threshold of modal growth of these instabilities, are continuously connected when some axial electrical current is allowed to pass through the rotating fluid. We investigate the nonmodal dynamics of these instabilities arising from the non-normality of shear flow in the local approximation, generalizing the results of the modal approach. It is demonstrated that moderate transient/nonmodal amplification of both types of magnetorotational instability occurs within the Liu limits, where the system is stable according to modal analysis. We show that for the helical magnetorotational instability this magnetohydrodynamic behavior is closely connected with the nonmodal growth of the underlying purely hydrodynamic problem.
Chorus-like whistler-mode waves that are known to play a fundamental role in driving radiation-belt dynamics are excited on the Large Plasma Device by the injection of a helical electron beam into a cold plasma. The mode structure of the excited whistler wave is identified using a phase-correlation technique showing that the waves are excited through a combination of Landau resonance, cyclotron resonance and anomalous cyclotron resonance. The dominant wave mode excited through cyclotron resonance is quasi-parallel propagating, whereas wave modes excited through Landau resonance and anomalous cyclotron resonance propagate at oblique angles that are close to the resonance cone. An analysis of the linear wave growth rates captures the major observations in the experiment. The results have important implications for the generation process of whistler waves in the Earths inner magnetosphere.
Plasma densification through magnetic compression has been suggested for time-resolved control of the wave properties in plasma-based accelerators. Using particle in cell simulations with real mass ratio, the practicality of large magnetic compression on timescales shorter than the ion gyro-period is investigated. For compression times shorter than the transit time of a compressional Alfven wave across the plasma slab, results show the formation of two counter-propagating shock waves, leading to a highly non-uniform plasma density profile. Furthermore, the plasma slab displays large hydromagnetic like oscillations after the driving field has reached steady state. Peak compression is obtained when the two shocks collide in the mid-plane. At this instant, very large plasma heating is observed, and plasma $beta$ is estimated to be about $1$. Although these results point out a densification mechanism quite different and more complex than initially envisioned, these features could possibly be advantageous in particle accelerators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا