Do you want to publish a course? Click here

R Package ASMap: Efficient Genetic Linkage Map Construction and Diagnosis

47   0   0.0 ( 0 )
 Added by Julian Taylor
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Although various forms of linkage map construction software are widely available, there is a distinct lack of packages for use in the R statistical computing environment. This article introduces the ASMap linkage map construction R package which contains functions that use the efficient MSTmap algorithm for clustering and optimally ordering large sets of markers. Additional to the construction functions, the package also contains a suite of tools to assist in the rapid diagnosis and repair of a constructed linkage map. The package functions can also be used for post linkage map construction techniques such as fine mapping or combining maps of the same population. To showcase the efficiency and functionality of ASMap, the complete linkage map construction process is demonstrated with a high density barley backcross marker data set.



rate research

Read More

We introduce the UPG package for highly efficient Bayesian inference in probit, logit, multinomial logit and binomial logit models. UPG offers a convenient estimation framework for balanced and imbalanced data settings where sampling efficiency is ensured through Markov chain Monte Carlo boosting methods. All sampling algorithms are implemented in C++, allowing for rapid parameter estimation. In addition, UPG provides several methods for fast production of output tables and summary plots that are easily accessible to a broad range of users.
Implementations in R of classical general-purpose algorithms generally have two major limitations which make them unusable in complex problems: too loose convergence criteria and too long calculation time. By relying on a Marquardt-Levenberg algorithm (MLA), a Newton-like method particularly robust for solving local optimization problems, we provide with marqLevAlg package an efficient and general-purpose local optimizer which (i) prevents convergence to saddle points by using a stringent convergence criterion based on the relative distance to minimum/maximum in addition to the stability of the parameters and of the objective function; and (ii) reduces the computation time in complex settings by allowing parallel calculations at each iteration. We demonstrate through a variety of cases from the literature that our implementation reliably and consistently reaches the optimum (even when other optimizers fail), and also largely reduces computational time in complex settings through the example of maximum likelihood estimation of different sophisticated statistical models.
The R package sns implements Stochastic Newton Sampler (SNS), a Metropolis-Hastings Monte Carlo Markov Chain algorithm where the proposal density function is a multivariate Gaussian based on a local, second-order Taylor series expansion of log-density. The mean of the proposal function is the full Newton step in Newton-Raphson optimization algorithm. Taking advantage of the local, multivariate geometry captured in log-density Hessian allows SNS to be more efficient than univariate samplers, approaching independent sampling as the density function increasingly resembles a multivariate Gaussian. SNS requires the log-density Hessian to be negative-definite everywhere in order to construct a valid proposal function. This property holds, or can be easily checked, for many GLM-like models. When initial point is far from density peak, running SNS in non-stochastic mode by taking the Newton step, augmented with with line search, allows the MCMC chain to converge to high-density areas faster. For high-dimensional problems, partitioning of state space into lower-dimensional subsets, and applying SNS to the subsets within a Gibbs sampling framework can significantly improve the mixing of SNS chains. In addition to the above strategies for improving convergence and mixing, sns offers diagnostics and visualization capabilities, as well as a function for sample-based calculation of Bayesian predictive posterior distributions.
Following the seminal idea of Tukey, data depth is a function that measures how close an arbitrary point of the space is located to an implicitly defined center of a data cloud. Having undergone theoretical and computational developments, it is now employed in numerous applications with classification being the most popular one. The R-package ddalpha is a software directed to fuse experience of the applicant with recent achievements in the area of data depth and depth-based classification. ddalpha provides an implementation for exact and approximate computation of most reasonable and widely applied notions of data depth. These can be further used in the depth-based multivariate and functional classifiers implemented in the package, where the $DDalpha$-procedure is in the main focus. The package is expandable with user-defined custom depth methods and separators. The implemented functions for depth visualization and the built-in benchmark procedures may also serve to provide insights into the geometry of the data and the quality of pattern recognition.
Process data refer to data recorded in the log files of computer-based items. These data, represented as timestamped action sequences, keep track of respondents response processes of solving the items. Process data analysis aims at enhancing educational assessment accuracy and serving other assessment purposes by utilizing the rich information contained in response processes. The R package ProcData presented in this article is designed to provide tools for processing, describing, and analyzing process data. We define an S3 class proc for organizing process data and extend generic methods summary and print for class proc. Two feature extraction methods for process data are implemented in the package for compressing information in the irregular response processes into regular numeric vectors. ProcData also provides functions for fitting and making predictions from a neural-network-based sequence model. These functions call relevant functions in package keras for constructing and training neural networks. In addition, several response process generators and a real dataset of response processes of the climate control item in the 2012 Programme for International Student Assessment are included in the package.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا