Do you want to publish a course? Click here

Nanodiamonds with photostable, sub-gigahertz linewidths quantum emitters

113   0   0.0 ( 0 )
 Added by Trong Toan Tran Mr.
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Single photon emitters with narrow linewidths are highly sought after for applications in quantum information processing and quantum communications. In this letter, we report on a bright, highly polarized near infrared single photon emitter embedded in diamond nanocrystals with a narrow, sub GHz optical linewidths at 10K. The observed zero phonon line at ~ 780 nm is optically stable under low power resonant excitation and blue shifts as the excitation power increases. Our results highlight the prospect for using new near infrared color centers in nanodiamonds for quantum applications.



rate research

Read More

Nanodiamonds (NDs) hosting optically active defects are an important technical material for applications in quantum sensing, biological imaging, and quantum optics. The negatively charged silicon vacancy (SiV) defect is known to fluoresce in molecular sized NDs (1 to 6 nm) and its spectral properties depend on the quality of the surrounding host lattice. This defect is therefore a good probe to investigate the material properties of small NDs. Here we report unprecedented narrow optical transitions for SiV colour centers hosted in nanodiamonds produced using a novel high-pressure high-temperature (HPHT) technique. The SiV zero-phonon lines were measured to have an inhomogeneous distribution of 1.05 nm at 5 K across a sample of numerous NDs. Individual spectral lines as narrow as 354 MHz were measured for SiV centres in nanodiamonds smaller than 200 nm, which is four times narrower than the best SiV line previously reported for nanodiamonds. Correcting for apparent spectral diffusion yielded a homogeneous linewith of about 200 MHz, which is close to the width limit imposed by the radiative lifetime. These results demonstrate that the direct HPHT synthesis technique is capable of producing nanodiamonds with high crystal lattice quality, which are therefore a valuable technical material.
We report on the isolation of single SiV$^-$ centers in nanodiamonds. We observe the fine-structure of single SiV$^-$ center with improved inhomogeneous ensemble linewidth below the excited state splitting, stable optical transitions, good polarization contrast and excellent spectral stability under resonant excitation. Based on our experimental results we elaborate an analytical strain model where we extract the ratio between strain coefficients of excited and ground states as well the intrinsic zero-strain spin-orbit splittings. The observed strain values are as low as best values in low-strain bulk diamond. We achieve our results by means of H-plasma treatment of the diamond surface and in combination with resonant and off-resonant excitation. Our work paves the way for indistinguishable, single photon emission. Furthermore, we demonstrate controlled nano-manipulation via atomic force microscope cantilever of 1D- and 2D-alignments with a so-far unreached accuracy of about 10nm, as well as new tools including dipole rotation and cluster decomposition. Combined, our results show the potential to utilize SiV$^-$ centers in nanodiamonds for the controlled interfacing via optical coupling of individually well-isolated atoms for bottom-up assemblies of complex quantum systems.
Nanoscale optical thermometry is a promising non-contact route for measuring local temperature with both high sensitivity and spatial resolution. In this work, we present a deterministic optical thermometry technique based on quantum emitters in nanoscale hexagonal boron-nitride. We show that these nanothermometers exhibit better performance than that of homologous, all-optical nanothermometers both in sensitivity and range of working temperature. We demonstrate their effectiveness as nanothermometers by monitoring the local temperature at specific locations in a variety of custom-built micro-circuits. This work opens new avenues for nanoscale temperature measurements and heat flow studies in miniaturized, integrated devices.
Quantum light sources in solid-state systems are of major interest as a basic ingredient for integrated quantum device technologies. The ability to tailor quantum emission through deterministic defect engineering is of growing importance for realizing scalable quantum architectures. However, a major difficulty is that defects need to be positioned site-selectively within the solid. Here, we overcome this challenge by controllably irradiating single-layer MoS$_{2}$ using a sub-nm focused helium ion beam to deterministically create defects. Subsequent encapsulation of the ion bombarded MoS$_{2}$ flake with high-quality hBN reveals spectrally narrow emission lines that produce photons at optical wavelengths in an energy window of one to two hundred meV below the neutral 2D exciton of MoS$_{2}$. Based on ab-initio calculations we interpret these emission lines as stemming from the recombination of highly localized electron-hole complexes at defect states generated by the helium ion bombardment. Our approach to deterministically write optically active defect states in a single transition metal dichalcogenide layer provides a platform for realizing exotic many-body systems, including coupled single-photon sources and exotic Hubbard systems.
Polariton lattice condensates provide a platform for on chip quantum emulations. Interactions in extended polariton lattices are currently limited by the intrinsic photonic disorder of microcavities. Here, we fabricate a strain compensated planar GaAs/AlAs microcavity with embedded InGaAs quantum wells and report on polariton condensation under non-resonant optical excitation. Evidence of polariton condensation is supported spectroscopically both in reflection and transmission geometry, whilst the observation of a second threshold to photon lasing allows us to conclusively distinguish between the strong- and weak-coupling non-linear regimes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا