Do you want to publish a course? Click here

A General Model for Robust Tensor Factorization with Unknown Noise

67   0   0.0 ( 0 )
 Added by Yao Wang
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Because of the limitations of matrix factorization, such as losing spatial structure information, the concept of low-rank tensor factorization (LRTF) has been applied for the recovery of a low dimensional subspace from high dimensional visual data. The low-rank tensor recovery is generally achieved by minimizing the loss function between the observed data and the factorization representation. The loss function is designed in various forms under different noise distribution assumptions, like $L_1$ norm for Laplacian distribution and $L_2$ norm for Gaussian distribution. However, they often fail to tackle the real data which are corrupted by the noise with unknown distribution. In this paper, we propose a generalized weighted low-rank tensor factorization method (GWLRTF) integrated with the idea of noise modelling. This procedure treats the target data as high-order tensor directly and models the noise by a Mixture of Gaussians, which is called MoG GWLRTF. The parameters in the model are estimated under the EM framework and through a new developed algorithm of weighted low-rank tensor factorization. We provide t

rate research

Read More

131 - Yaqing Wang , James T. Kwok , 2019
Convolutional sparse coding (CSC) can learn representative shift-invariant patterns from multiple kinds of data. However, existing CSC methods can only model noises from Gaussian distribution, which is restrictive and unrealistic. In this paper, we propose a general CSC model capable of dealing with complicated unknown noise. The noise is now modeled by Gaussian mixture model, which can approximate any continuous probability density function. We use the expectation-maximization algorithm to solve the problem and design an efficient method for the weighted CSC problem in maximization step. The crux is to speed up the convolution in the frequency domain while keeping the other computation involving weight matrix in the spatial domain. Besides, we simultaneously update the dictionary and codes by nonconvex accelerated proximal gradient algorithm without bringing in extra alternating loops. The resultant method obtains comparable time and space complexity compared with existing CSC methods. Extensive experiments on synthetic and real noisy biomedical data sets validate that our method can model noise effectively and obtain high-quality filters and representation.
In this paper we address the problem of building a class of robust factorization algorithms that solve for the shape and motion parameters with both affine (weak perspective) and perspective camera models. We introduce a Gaussian/uniform mixture model and its associated EM algorithm. This allows us to address robust parameter estimation within a data clustering approach. We propose a robust technique that works with any affine factorization method and makes it robust to outliers. In addition, we show how such a framework can be further embedded into an iterative perspective factorization scheme. We carry out a large number of experiments to validate our algorithms and to compare them with existing ones. We also compare our approach with factorization methods that use M-estimators.
121 - Qianxi Wu , An-Bao Xu 2021
Tensor decomposition is a popular technique for tensor completion, However most of the existing methods are based on linear or shallow model, when the data tensor becomes large and the observation data is very small, it is prone to over fitting and the performance decreases significantly. To address this problem, the completion method for a tensor based on a Biased Deep Tensor Factorization Network (BDTFN) is proposed. This method can not only overcome the shortcomings of traditional tensor factorization, but also deal with complex non-linear data. Firstly, the horizontal and lateral tensors corresponding to the observed values of the input tensors are used as inputs and projected to obtain their horizontal (lateral) potential feature tensors. Secondly, the horizontal (lateral) potential feature tensors are respectively constructed into a multilayer perceptron network. Finally, the horizontal and lateral output tensors are fused by constructing a bilinear pooling layer. Tensor forward-propagation is composed of those three step, and its parameters are updated by tensor back-propagation using the multivariable chain rule. In this paper, we consider the large-scale 5-minute traffic speed data set and use it to address the missing data imputation problem for large-scale spatiotemporal traffic data. In addition, we compare the numerical performance of the proposed algorithm with those for state-of-the-art approaches on video recovery and color image recovery. Numerical experimental results illustrate that our approach is not only much more accurate than those state-of-the-art methods, but it also has high speed.
Probabilistic approaches for tensor factorization aim to extract meaningful structure from incomplete data by postulating low rank constraints. Recently, variational Bayesian (VB) inference techniques have successfully been applied to large scale models. This paper presents full Bayesian inference via VB on both single and coupled tensor factorization models. Our method can be run even for very large models and is easily implemented. It exhibits better prediction performance than existing approaches based on maximum likelihood on several real-world datasets for missing link prediction problem.
Advanced and effective collaborative filtering methods based on explicit feedback assume that unknown ratings do not follow the same model as the observed ones (emph{not missing at random}). In this work, we build on this assumption, and introduce a novel dynamic matrix factorization framework that allows to set an explicit prior on unknown values. When new ratings, users, or items enter the system, we can update the factorization in time independent of the size of data (number of users, items and ratings). Hence, we can quickly recommend items even to very recent users. We test our methods on three large datasets, including two very sparse ones, in static and dynamic conditions. In each case, we outrank state-of-the-art matrix factorization methods that do not use a prior on unknown ratings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا