No Arabic abstract
Careful analyses of photometric and star count data available for the nine putative young clusters identified by Camargo et al. (2015, 2016) at high Galactic latitudes reveal that none of the groups contain early-type stars, and most are not significant density enhancements above field level. 2MASS colours for stars in the groups match those of unreddened late-type dwarfs and giants, as expected for contamination by (mostly) thin disk objects. A simulation of one such field using only typical high latitude foreground stars yields a colour-magnitude diagram that is very similar to those constructed by Camargo et al. (2015, 2016) as evidence for their young groups as well as the means of deriving their reddenings and distances. Although some of the fields are coincident with clusters of galaxies, one must conclude that there is no evidence that the putative clusters are extremely young stellar groups.
Extinction in ultraviolet is much more significant than in optical or infrared, which can be very informative to precisely measure the extinction and understand the dust properties in the low extinction areas. The high Galactic latitude sky is such an area, important for studying the extragalactic sky and the universe. Based on the stellar parameters measured by the LAMOST and GALAH spectroscopy and the ultraviolet photomery by the emph{GALEX} space telescope, the extinction of 1,244,504 stars in the emph{GALEX}/NUV band and 56,123 stars in the emph{GALEX}/FUV band are calculated precisely. textbf{The error of color excess is 0.009, 0.128 and 0.454 mag for $E_{rm G_{BP}, G_{RP}}$, $E_{rm NUV,G_{BP}}$ and $E_{rm FUV,G_{BP}}$ respectively.} They delineates the emph{GALEX}/NUV extinction map of about a third of the sky mainly at the high Galactic latitude area with an angular resolution of $sim 0.4,, rm deg$. The mean color excess ratio in the entire sky areas is derived to be 3.25, 2.95 and -0.37 for $E_{{rm NUV,G_{BP}}} / E_{{rm G_{BP},G_{RP}}}$, $E_{{rm FUV,G_{BP}}} / E_{{rm G_{BP},G_{RP}}}$ and $E_{{rm FUV,NUV}} / E_{{rm G_{BP},G_{RP}}}$ respectively, which is in general agreement with the previous works, and their changes with the Galactic latitude and the interstellar extinction are discussed.
Based on the accurate color excess $E_{rm G_{BP},G_{RP}}$ of more than 4 million stars and $E_{rm NUV,G_{BP}}$ of more than 1 million stars from citet{2021ApJS..254...38S}, the distance and the extinction of the molecular clouds in the MBM catalog at $|b|>20^{circ}$ are studied in combination with the distance measurement of emph{Gaia}/EDR3. The distance as well as the color excess is determined for 66 molecular clouds. The color excess ratio $E_{rm G_{BP},G_{RP}}/E_{rm NUV,G_{BP}}$ is derived for 39 of them, which is obviously larger and implies more small particles at smaller extinction. In addition, the scale height of the dust disk is found to be about 100 pc and becomes large at the anticenter direction due to the disk flaring.
Gas at high Galactic latitude is a relatively little-noticed component of the interstellar medium. In an effort to address this, forty-one Planck Galactic Cold Clumps at high Galactic latitude (HGal; $|b|>25^{circ}$) were observed in $^{12}$CO, $^{13}$CO and C$^{18}$O J=1-0 lines, using the Purple Mountain Observatory 13.7-m telescope. $^{12}$CO (1-0) and $^{13}$CO (1-0) emission was detected in all clumps while C$^{18}$O (1-0) emission was only seen in sixteen clumps. The highest and average latitudes are $71.4^{circ}$ and $37.8^{circ}$, respectively. Fifty-one velocity components were obtained and then each was identified as a single clump. Thirty-three clumps were further mapped at 1$^prime$ resolution and 54 dense cores were extracted. Among dense cores, the average excitation temperature $T_{mathrm{ex}}$ of $^{12}$CO is 10.3 K. The average line widths of thermal and non-thermal velocity dispersions are $0.19$ km s$^{-1}$ and $0.46$ km s$^{-1}$ respectively, suggesting that these cores are dominated by turbulence. Distances of the HGal clumps given by Gaia dust reddening are about $120-360$ pc. The ratio of $X_{13}$/$X_{18}$ is significantly higher than that in the solar neighbourhood, implying that HGal gas has a different star formation history compared to the gas in the Galactic disk. HGal cores with sizes from $0.01-0.1$ pc show no notable Larsons relation and the turbulence remains supersonic down to a scale of slightly below $0.1$ pc. None of the HGal cores which bear masses from 0.01-1 $M_{odot}$ are gravitationally bound and all appear to be confined by outer pressure.
Until recently it was thought that high Galactic latitude clouds were a non-star-forming ensemble. However, in a previous study we reported the discovery of two embedded clusters (ECs) far away from the Galactic plane ($sim5$ kpc). In our recent star cluster catalogue we provided additional high and intermediate latitude cluster candidates. This work aims to clarify if our previous detection of star clusters far away from the disc represents just an episodic event or if the star cluster formation is currently a systematic phenomenon in the Galactic halo. We analyse the nature of four clusters found in our recent catalogue and report the discovery of three new ECs with unusually high latitude and distance from the Galactic disc midplane. All of these clusters are younger than 5 Myr. The high-latitude ECs C 932, C 934, and C 939 appear to be related to a cloud complex about 5 kpc below the Galactic disc, under the Local arm. The other clusters are above the disc, C 1074 and C 1100 with a vertical distance of $sim3$ kpc, C 1099 with $sim2$ kpc, and C 1101 with $sim1.8$ kpc. According to the derived parameters there occur ECs located below and above the disc, which is an evidence of widespread star cluster formation throughout the Galactic halo. Thus, this study represents a paradigm shift, in the sense that a sterile halo becomes now a host of ongoing star formation. The origin and fate of these ECs remain open. There are two possibilities for their origin, Galactic fountain or infall. The discovery of ECs far from the disc suggests that the Galactic halo is more actively forming stars than previously thought and since most ECs do not survive the textit{infant mortality} it may be raining stars from the halo into the disc, and/or the halo harbours generations of stars formed in clusters like those hereby detected.
Molecular clouds at very high latitude ($b>60^{circ}$) away from the Galactic plane are rare and in general are expected to be non-star-forming. However, we report the discovery of two embedded clusters (Camargo 438 and Camargo 439) within the high-latitude molecular cloud HRK 81.4-77.8 using WISE. Camargo 439 with Galactic coordinates $ell=81.11^{circ}$ and $b=-77.84^{circ}$ is an $sim2$ Myr embedded cluster (EC) located at a distance from the Sun of $d_{odot}=5.09pm0.47$ kpc. Adopting the distance of the Sun to the Galactic centre $R_{odot}=7.2$ kpc we derive for Camargo 439 a Galactocentric distance of $R_{GC}=8.70pm0.26$ kpc and a vertical distance from the plane of $-4.97pm0.46$ kpc. Camargo 438 at $ell=79.66^{circ}$ and $b=-78.86^{circ}$ presents similar values. The derived parameters for these two ECs put HRK 81.4-77.8 in the halo at a distance from the Galactic centre of $sim8.7$ kpc and $sim5.0$ kpc from the disc. Star clusters provide the only direct means to determine the high latitude molecular cloud distances. The present study shows that the molecular cloud HRK 81.4-77.8 is currently forming stars, apparently an unprecedented event detected so far among high latitude clouds. We carried out a preliminary orbit analysis. It shows that this ECs are the most distant known embedded clusters from the plane and both cloud and clusters are probably falling ballistically from the halo onto the Galactic disc, or performing a flyby.