No Arabic abstract
A new mechanism is proposed for dissipatively preparing maximal Bell entangled state of two atoms in an optical cavity. This scheme integrates the spontaneous emission, the light shift of atoms in the presence of dispersive microwave field, and the quantum Zeno dynamics induced by continuous coupling, to obtain a unique steady state irrespective of initial state. Even for a large cavity decay, a high-fidelity entangled state is achievable at a short convergence time, since the occupation of cavity mode is inhibited by the Zeno requirement. Therefore, a low single-atom cooperativity $C=g^2/(kappagamma)$ is good enough for realizing a high fidelity of entanglement in a wide range of decoherence parameters. As a straightforward extension, the feasibility for preparation of two-atom Knill-Laflamme-Milburn state with the same mechanism is also discussed.
We analyze the quantum Zeno dynamics that takes place when a field stored in a cavity undergoes frequent interactions with atoms. We show that repeated measurements or unitary operations performed on the atoms probing the field state confine the evolution to tailored subspaces of the total Hilbert space. This confinement leads to non-trivial field evolutions and to the generation of interesting non-classical states, including mesoscopic field state superpositions. We elucidate the main features of the quantum Zeno mechanism in the context of a state-of-the-art cavity quantum electrodynamics experiment. A plethora of effects is investigated, from state manipulations by phase space tweezers to nearly arbitrary state synthesis. We analyze in details the practical implementation of this dynamics and assess its robustness by numerical simulations including realistic experimental imperfections. We comment on the various perspectives opened by this proposal.
We propose two experimental schemes for producing coherent-state superpositions which approximate different nonclassical states conditionally in traveling optical fields. Although these setups are constructed of a small number of linear optical elements and homodyne measurements, they can be used to generate various photon number superpositions in which the number of constituent states can be higher than the number of measurements in the schemes. We determine numerically the parameters to achieve maximal fidelity of the preparation for a large variety of nonclassical states, such as amplitude squeezed states, squeezed number states, binomial states and various photon number superpositions. The proposed setups can generate these states with high fidelities and with success probabilities that can be promising for practical applications.
The Knill-Laflamme-Milburn (KLM) states have been proved to be a useful resource for quantum information processing [Nature 409, 46 (2001)]. For atomic KLM states, several schemes have been put forward based on the time-dependent unitary dynamics, but the dissipative generation of these states has not been reported. This work discusses the possibility for creating different forms of bipartite KLM states in neutral atom system, where the spontaneous emission of excited Rydberg states, combined with the Rydberg antiblockade mechanism, is actively exploited to engineer a steady KLM state from an arbitrary initial state. The numerical simulation of the master equation signifies that a fidelity above 99% is available with the current experimental parameters.
We present a scheme for the dissipative preparation of an entangled steady state of two superconducting qubits in a circuit QED setup. Combining resonator photon loss, a dissipative process already present in the setup, with an effective two-photon microwave drive, we engineer an effective decay mechanism which prepares a maximally entangled state of the two qubits. This state is then maintained as the steady state of the driven, dissipative evolution. The performance of the dissipative state preparation protocol is studied analytically and verified numerically. In view of the experimental implementation of the presented scheme we investigate the effects of potential experimental imperfections and show that our scheme is robust to small deviations in the parameters. We find that high fidelities with the target state can be achieved both with state-of-the-art 3D, as well as with the more commonly used 2D transmons. The promising results of our study thus open a route for the demonstration of an entangled steady state in circuit QED.
Continuing our work on the nature and existence of fluctuation-dissipation relations (FDR) in linear and nonlinear open quantum systems [1-3], here we consider such relations when a linear system is in a nonequilibrium steady state (NESS). With the model of two-oscillators (considered as a short harmonic chain with the two ends) each connected to a thermal bath of different temperatures we find that when the chain is fully relaxed due to interaction with the baths, the relation that connects the noise kernel and the imaginary part of the dissipation kernel of the chain in one bath does not assume the conventional form for the FDR in equilibrium cases. There exists an additional term we call the `bias current that depends on the difference of the baths initial temperatures and the inter-oscillator coupling strength. We further show that this term is related to the steady heat flow between the two baths when the system is in NESS. The ability to know the real-time development of the inter-heat exchange (between the baths and the end-oscillators) and the intra-heat transfer (within the chain) and their dependence on the parameters in the system offers possibilities for quantifiable control and in the design of quantum heat engines or thermal devices.