We study topological crystalline insulators doped with magnetic impurities, in which ferromagnetism at the surface lowers the electronic energy by spontaneous breaking of a crystalline symmetry. The number of energetically equivalent ground states is sensitive to the crystalline symmetry of the surface, as well as the precise density of electrons at the surface. We show that for a SnTe model in the topological state, magnetic states can have twofold symmetry, sixfold symmetry, or eightfold degenerate minima. We compute spin stiffnesses within the model to demonstrate the stability of ferromagnetic states, and consider their ramifications for thermal disordering. Possible experimental consequences of the surface magnetism are discussed.