Do you want to publish a course? Click here

Estimating the time evolution of NMR systems via quantum speed limit-like expression

45   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Finding the solutions of the equations that describe the dynamics of a given physical system is crucial in order to obtain important information about its evolution. However, by using estimation theory, it is possible to obtain, under certain limitations, some information on its dynamics. The quantum-speed-limit (QSL) theory was originally used to estimate the shortest time in which a Hamiltonian drives an initial state to a final one for a given fidelity. Using the QSL theory in a slightly different way, we are able to estimate the running time of a given quantum process. For that purpose, we impose the saturation of the Anandan-Aharonov bound in a rotating frame of reference where the state of the system travels slower than in the original frame (laboratory frame). Through this procedure it is possible to estimate the actual evolution time in the laboratory frame of reference with good accuracy when compared to previous methods. Our method is tested successfully to predict the time spent in the evolution of nuclear spins 1/2 and 3/2 in NMR systems. We find that the estimated time according to our method is better than previous approaches by up to four orders of magnitude. One disadvantage of our method is that we need to solve a number of transcendental equations, which increases with the system dimension and parameter discretization used to solve such equations numerically.



rate research

Read More

Quantum speed limit time defines the limit on the minimum time required for a quantum system to evolve between two states. Investigation of bounds on speed limit time of quantum system under non-unitary evolution is of fundamental interest, as it reveals interesting connections to quantum (non-)Markovianity. Here, we discuss the characteristics of quantum speed limit time as a function of quantum memory, quantified as the deviation from temporal self-similarity of quantum dynamical maps for CP-divisible as well as indivisible maps. This provides an operational meaning to CP-divisible (non-)Markovianity.
Quantum mechanics establishes a fundamental bound for the minimum evolution time between two states of a given system. Known as the quantum speed limit (QSL), it is a useful tool in the context of quantum control, where the speed of some control protocol is usually intended to be as large as possible. While QSL expressions for time-independent hamiltonians have been well studied, the time-dependent regime has remained somewhat unexplored, albeit being usually the relevant problem to be compared with when studying systems controlled by external fields. In this paper we explore the relation between optimal times found in quantum control and the QSL bound, in the (relevant) time-dependent regime, by discussing the ubiquitous two-level Landau-Zener type hamiltonian.
Quantum theory sets a bound on the minimal time evolution between initial and target states. This bound is called as quantum speed limit time. It is used to quantify maximal speed of quantum evolution. The quantum evolution will be faster, if quantum speed limit time decreases. In this work, we study the quantum speed limit time of a quantum state in the presence of disturbance effects in an environment. We use the model which is provided by Masashi Ban in href{https://doi.org/10.1103/PhysRevA.99.012116}{Phys. Rev. A 99, 012116 (2019)}. In this model two quantum systems $mathcal{A}$ and $mathcal{S}$ interact with environment sequentially. At first, quantum system $mathcal{A}$ interacts with the environment $mathcal{E}$ as an auxiliary system then quantum system $mathcal{S}$ interacts with disturbed environment immediately. In this work, we consider dephasing coupling with two types of environment with different spectral density: Ohmic and Lorentzian. We observe that, non-Markovian effects will be appear in the dynamics of quantum system $mathcal{S}$ by the interaction of quantum system $mathcal{A}$ with the environment. Given the fact that quantum speed limit time reduces due to non-Markovian effects, we show that disturbance effects will reduce the quantum speed limit time.
Memory effects play a fundamental role in the dynamics of open quantum systems. There exist two different views on memory for quantum noises. In the first view, the quantum channel has memory when there exist correlations between successive uses of the channels on a sequence of quantum systems. These types of channels are also known as correlated quantum channels. In the second view, memory effects result from correlations which are created during the quantum evolution. In this work we will consider the first view and study the quantum speed limit time for a correlated quantum channel. Quantum speed limit time is the bound on the minimal time which is needed for a quantum system to evolve from an initial state to desired states. The quantum evolution is fast if the quantum speed limit time is short. In this work, we will study the quantum speed limit time for some correlated unital and correlated non-unital channels. As an example for unital channels we choose correlated dephasing colored noise. We also consider the correlated amplitude damping and correlated squeezed generalized amplitude damping channels as the examples for non-unital channels. It will be shown that the quantum speed limit time for correlated pure dephasing colored noise is increased by increasing correlation strength, while for correlated amplitude damping and correlated squeezed generalized amplitude damping channels quantum speed limit time is decreased by increasing correlation strength.
125 - N. A. Khan , M. Jan 2020
We investigate the roles of the relativistic effect on the speed of evolution of a quantum system coupled with amplitude damping channels. We find that the relativistic effect speed-up the quantum evolution to a uniform evolution speed of open quantum systems for the damping parameter $p_{tau}lesssim p_{tau_{c0}}.$ Moreover, we point out a non-monotonic behavior of the quantum speed limit time (QSLT) with acceleration in the damping limit $p_{tau_{c0}}lesssim p_{tau}lesssim p_{tau_{c1}},$ where the relativistic effect first speed-up and then slow down the quantum evolution process of the damped system. For the damping strength $p_{tau_{c1}}lesssim p_{tau}$, we observe a monotonic increasing behavior of QSLT, leads to slow down the quantum evolution of the damped system. In addition, we examine the roles of the relativistic effect on the speed limit time for a system coupled with the phase damping channels.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا