Do you want to publish a course? Click here

Joint Learning from Earth Observation and OpenStreetMap Data to Get Faster Better Semantic Maps

132   0   0.0 ( 0 )
 Added by Nicolas Audebert
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

In this work, we investigate the use of OpenStreetMap data for semantic labeling of Earth Observation images. Deep neural networks have been used in the past for remote sensing data classification from various sensors, including multispectral, hyperspectral, SAR and LiDAR data. While OpenStreetMap has already been used as ground truth data for training such networks, this abundant data source remains rarely exploited as an input information layer. In this paper, we study different use cases and deep network architectures to leverage OpenStreetMap data for semantic labeling of aerial and satellite images. Especially , we look into fusion based architectures and coarse-to-fine segmentation to include the OpenStreetMap layer into multispectral-based deep fully convolutional networks. We illustrate how these methods can be successfully used on two public datasets: ISPRS Potsdam and DFC2017. We show that OpenStreetMap data can efficiently be integrated into the vision-based deep learning models and that it significantly improves both the accuracy performance and the convergence speed of the networks.

rate research

Read More

A rapidly increasing portion of Internet traffic is dominated by requests from mobile devices with limited- and metered-bandwidth constraints. To satisfy these requests, it has become standard practice for websites to transmit small and extremely compressed image previews as part of the initial page-load process. Recent work, based on an adaptive triangulation of the target image, has shown the ability to generate thumbnails of full images at extreme compression rates: 200 bytes or less with impressive gains (in terms of PSNR and SSIM) over both JPEG and WebP standards. However, qualitative assessments and preservation of semantic content can be less favorable. We present a novel method to significantly improve the reconstruction quality of the original image with no changes to the encoded information. Our neural-based decoding not only achieves higher PSNR and SSIM scores than the original methods, but also yields a substantial increase in semantic-level content preservation. In addition, by keeping the same encoding stream, our solution is completely inter-operable with the original decoder. The end result is suitable for a range of small-device deployments, as it involves only a single forward-pass through a small, scalable network.
Earth observation technologies, such as optical imaging and synthetic aperture radar (SAR), provide excellent means to monitor ever-growing urban environments continuously. Notably, in the case of large-scale disasters (e.g., tsunamis and earthquakes), in which a response is highly time-critical, images from both data modalities can complement each other to accurately convey the full damage condition in the disasters aftermath. However, due to several factors, such as weather and satellite coverage, it is often uncertain which data modality will be the first available for rapid disaster response efforts. Hence, novel methodologies that can utilize all accessible EO datasets are essential for disaster management. In this study, we have developed a global multisensor and multitemporal dataset for building damage mapping. We included building damage characteristics from three disaster types, namely, earthquakes, tsunamis, and typhoons, and considered three building damage categories. The global dataset contains high-resolution optical imagery and high-to-moderate-resolution multiband SAR data acquired before and after each disaster. Using this comprehensive dataset, we analyzed five data modality scenarios for damage mapping: single-mode (optical and SAR datasets), cross-modal (pre-disaster optical and post-disaster SAR datasets), and mode fusion scenarios. We defined a damage mapping framework for the semantic segmentation of damaged buildings based on a deep convolutional neural network algorithm. We compare our approach to another state-of-the-art baseline model for damage mapping. The results indicated that our dataset, together with a deep learning network, enabled acceptable predictions for all the data modality scenarios.
We study the task of semantic mapping - specifically, an embodied agent (a robot or an egocentric AI assistant) is given a tour of a new environment and asked to build an allocentric top-down semantic map (what is where?) from egocentric observations of an RGB-D camera with known pose (via localization sensors). Towards this goal, we present SemanticMapNet (SMNet), which consists of: (1) an Egocentric Visual Encoder that encodes each egocentric RGB-D frame, (2) a Feature Projector that projects egocentric features to appropriate locations on a floor-plan, (3) a Spatial Memory Tensor of size floor-plan length x width x feature-dims that learns to accumulate projected egocentric features, and (4) a Map Decoder that uses the memory tensor to produce semantic top-down maps. SMNet combines the strengths of (known) projective camera geometry and neural representation learning. On the task of semantic mapping in the Matterport3D dataset, SMNet significantly outperforms competitive baselines by 4.01-16.81% (absolute) on mean-IoU and 3.81-19.69% (absolute) on Boundary-F1 metrics. Moreover, we show how to use the neural episodic memories and spatio-semantic allocentric representations build by SMNet for subsequent tasks in the same space - navigating to objects seen during the tour(Find chair) or answering questions about the space (How many chairs did you see in the house?). Project page: https://vincentcartillier.github.io/smnet.html.
Video representation learning is a vital problem for classification task. Recently, a promising unsupervised paradigm termed self-supervised learning has emerged, which explores inherent supervisory signals implied in massive data for feature learning via solving auxiliary tasks. However, existing methods in this regard suffer from two limitations when extended to video classification. First, they focus only on a single task, whereas ignoring complementarity among different task-specific features and thus resulting in suboptimal video representation. Second, high computational and memory cost hinders their application in real-world scenarios. In this paper, we propose a graph-based distillation framework to address these problems: (1) We propose logits graph and representation graph to transfer knowledge from multiple self-supervised tasks, where the former distills classifier-level knowledge by solving a multi-distribution joint matching problem, and the latter distills internal feature knowledge from pairwise ensembled representations with tackling the challenge of heterogeneity among different features; (2) The proposal that adopts a teacher-student framework can reduce the redundancy of knowledge learnt from teachers dramatically, leading to a lighter student model that solves classification task more efficiently. Experimental results on 3 video datasets validate that our proposal not only helps learn better video representation but also compress model for faster inference.
Video deraining is an important task in computer vision as the unwanted rain hampers the visibility of videos and deteriorates the robustness of most outdoor vision systems. Despite the significant success which has been achieved for video deraining recently, two major challenges remain: 1) how to exploit the vast information among continuous frames to extract powerful spatio-temporal features across both the spatial and temporal domains, and 2) how to restore high-quality derained videos with a high-speed approach. In this paper, we present a new end-to-end video deraining framework, named Enhanced Spatio-Temporal Interaction Network (ESTINet), which considerably boosts current state-of-the-art video deraining quality and speed. The ESTINet takes the advantage of deep residual networks and convolutional long short-term memory, which can capture the spatial features and temporal correlations among continuing frames at the cost of very little computational source. Extensive experiments on three public datasets show that the proposed ESTINet can achieve faster speed than the competitors, while maintaining better performance than the state-of-the-art methods.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا