Kurepa trees and spectra of $mathcal{L}_{omega_1,omega}$-sentences


Abstract in English

We use set-theoretic tools to make a model-theoretic contribution. In particular, we construct a emph{single} $mathcal{L}_{omega_1,omega}$-sentence $psi$ that codes Kurepa trees to prove the consistency of the following: (1) The spectrum of $psi$ is consistently equal to $[aleph_0,aleph_{omega_1}]$ and also consistently equal to $[aleph_0,2^{aleph_1})$, where $2^{aleph_1}$ is weakly inaccessible. (2) The amalgamation spectrum of $psi$ is consistently equal to $[aleph_1,aleph_{omega_1}]$ and $[aleph_1,2^{aleph_1})$, where again $2^{aleph_1}$ is weakly inaccessible. This is the first example of an $mathcal{L}_{omega_1,omega}$-sentence whose spectrum and amalgamation spectrum are consistently both right-open and right-closed. It also provides a positive answer to a question in [18]. (3) Consistently, $psi$ has maximal models in finite, countable, and uncountable many cardinalities. This complements the examples given in [1] and [2] of sentences with maximal models in countably many cardinalities. (4) $2^{aleph_0}<aleph_{omega_1}<2^{aleph_1}$ and there exists an $mathcal{L}_{omega_1,omega}$-sentence with models in $aleph_{omega_1}$, but no models in $2^{aleph_1}$. This relates to a conjecture by Shelah that if $aleph_{omega_1}<2^{aleph_0}$, then any $mathcal{L}_{omega_1,omega}$-sentence with a model of size $aleph_{omega_1}$ also has a model of size $2^{aleph_0}$. Our result proves that $2^{aleph_0}$ can not be replaced by $2^{aleph_1}$, even if $2^{aleph_0}<aleph_{omega_1}$.

Download