Wave propagation of field disturbances is ubiquitous. The electromagnetic and gravitational are cousin theories in which the corresponding waves play a relevant role to understand several related physical. It has been established that small electromagnetic waves can generate gravitational waves and vice versa when scattered by a charged black hole. In the realm of cylindrical spacetimes, we present here a simple nonlinear effect of the conversion of electromagnetic to gravitational waves reflected by the amount of mass extracted from them.
In this review paper we investigate the connection between gravity and electromagnetism from Faraday to the present day. The particular focus is on the connection between gravitational and electromagnetic radiation. We discuss electromagnetic radiation produced when a gravitational wave passes through a magnetic field. We then discuss the interaction of electromagnetic radiation with gravitational waves via Feynman diagrams of the process $graviton + graviton to photon + photon$. Finally we review recent work on the vacuum production of counterpart electromagnetic radiation by gravitational waves.
In the current work we investigate the propagation of electromagnetic waves in the field of gravitational waves. Starting with simple case of an electromagnetic wave travelling in the field of a plane monochromatic gravitational wave we introduce the concept of surfing effect and analyze its physical consequences. We then generalize these results to an arbitrary gravitational wave field. We show that, due to the transverse nature of gravitational waves, the surfing effect leads to significant observable consequences only if the velocity of gravitational waves deviates from speed of light. This fact can help to place an upper limit on the deviation of gravitational wave velocity from speed of light. The micro-arcsecond resolution promised by the upcoming precision interferometry experiments allow to place stringent upper limits on $epsilon = (v_{gw}-c)/c$ as a function of the energy density parameter for gravitational waves $Omega_{gw}$. For $Omega_{gw} approx 10^{-10}$ this limit amounts to $epsilonlesssim 2cdot 10^{-2}$.
We continue our study of the optical properties of the solar gravitational lens (SGL). Taking the next step beyond representing it as an idealized monopole, we now characterize the gravitational field of the Sun using an infinite series of multipole moments. We consider the propagation of electromagnetic (EM) waves in this gravitational field within the first post-Newtonian approximation of the general theory of relativity. The problem is formulated within the Mie diffraction theory. We solve Maxwells equations for the EM wave propagating in the background of a static gravitational field of an extended gravitating body, while accounting for multipole contributions. Using a wave-theoretical approach and the eikonal approximation, we find an exact closed form solution for the Debye potentials and determine the EM field at an image plane in the strong interference region of the lens. The resulting EM field is characterized by a new diffraction integral. We study this solution and show how the presence of multipoles affects the optical properties of the lens, resulting in distinct diffraction patterns. We identify the gravitational deflection angle with the individual contributions due to each of the multipoles. Treating the Sun as an extended, axisymmetric, rotating body, we show that each zonal harmonics causes light to diffract into an area whose boundary is a caustic of a particular shape. The appearance of the caustics modifies the point-spread function (PSF) of the lens, thus affecting its optical properties. The new wave-theoretical solution allows the study gravitational lensing by a realistic lens that possesses an arbitrary number of gravitational multipoles. This {em angular eikonal method} represents an improved treatment of realistic gravitational lensing. It may be used for a wave-optical description of many astrophysical lenses.
The renewed serious interest to possible practical applications of gravitational waves is encouraging. Building on previous work, I am arguing that the strong variable electromagnetic fields are appropriate systems for the generation and detection of high-frequency gravitational waves (HFGW). The advantages of electromagnetic systems are clearly seen in the proposed complete laboratory experiment, where one has to ensure the efficiency of, both, the process of generation and the process of detection of HFGW. Within the family of electromagnetic systems, one still has a great variety of possible geometrical configurations, classical and quantum states of the electromagnetic field, detection strategies, etc. According to evaluations performed 30 years ago, the gap between the HFGW laboratory signal and its level of detectability is at least 4 orders of magnitude. Hopefully, new technologies of today can remove this gap and can make the laboratory experiment feasible. The laboratory experiment is bound to be expensive, but one should remember that a part of the cost is likely to be reimbursed from the Nobel prize money ! Electromagnetic systems seem also appropriate for the detection of high-frequency end of the spectrum of relic gravitational waves. Although the current effort to observe the stochastic background of relic gravitational waves is focused on the opposite, very low-frequency, end of the spectrum, it would be extremely valuable for fundamental science to detect, or put sensible upper limits on, the high-frequency relic gravitational waves. I will briefly discuss the origin of relic gravitational waves, the expected level of their high-frequency signal, and the existing estimates of its detectability.
The behaviour of a test electromagnetic field in the background of an exact gravitational plane wave is investigated in the framework of Einsteins general relativity. We have expressed the general solution to the de Rham equations as a Fourier-like integral. In the general case we have reduced the problem to a set of ordinary differential equations and have explicitly written the solution in the case of linear polarization of the gravitational wave. We have expressed our results by means of Fermi Normal Coordinates (FNC), which define the proper reference frame of the laboratory. Moreover we have provided some gedanken experiments, showing that an external gravitational wave induces measurable effects of non tidal nature via electromagnetic interaction. Consequently it is not possible to eliminate gravitational effects on electromagnetic field, even in an arbitrarily small spatial region around an observer freely falling in the field of a gravitational wave. This is opposite to the case of mechanical interaction involving measurements of geodesic deviation effects. This behaviour is not in contrast with the principle of equivalence, which applies to arbitrarily small region of both space and time.
W. Barreto
,H. P. de Oliveira
,E. L. Rodrigues
.
(2017)
.
"Nonlinear interaction between electromagnetic and gravitational waves: an appraisal"
.
Willians Barreto
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا