Do you want to publish a course? Click here

The nuclear force imprints revealed on the elastic scattering of protons with $^{10}$C

69   0   0.0 ( 0 )
 Added by Petr Navratil
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

How does nature hold together protons and neutrons to form the wide variety of complex nuclei in the universe? Describing many-nucleon systems from the fundamental theory of quantum chromodynamics has been the greatest challenge in answering this question. The chiral effective field theory description of the nuclear force now makes this possible but requires certain parameters that are not uniquely determined. Defining the nuclear force needs identification of observables sensitive to the different parametrizations. From a measurement of proton elastic scattering on $^{10}$C at TRIUMF and ab initio nuclear reaction calculations we show that the shape and magnitude of the measured differential cross section is strongly sensitive to the nuclear force prescription.



rate research

Read More

Background: The influence of halo structure of $^6$He, $^8$B, $^{11}$Be and $^{11}$Li nuclei in several mechanisms such as direct reactions and fusion is already established, although not completely understood. The influence of the $^{10}$C Brunnian structure is less known. Purpose: To investigate the influence of the cluster configuration of $^{10}$C on the elastic scattering at an energy close to the Coulomb barrier. Methods: We present experimental data for the elastic scattering of the $^{10}$C+$^{208}$Pb system at $E_{rm lab}$ = 66 MeV. The data are compared to the three- and the four-body continuum-discretized coupled-channels calculations assuming $^9$B+$p$, $^6$Be+$alpha$ and $^8$Be+$p$+$p$ configurations. Results: The experimental angular distribution of the cross sections shows the suppression of the Fresnel peak that is reasonably well reproduced by the continuum-discretized coupled-channels calculations. However, the calculations underestimate the cross sections at backward angles. Couplings to continuum states represent a small effect. Conclusions: The cluster configurations of $^{10}$C assumed in the present work are able to describe some of the features of the data. In order to explain the data at backward angles, experimental data for the breakup and an extension of theoretical formalism towards a four-body cluster seem to be in need to reproduce the measured angular distribution.
The absolute differential cross sections for small-angle proton elastic scattering off the nuclei $^{12,14-17}$C have been measured in inverse kinematics at energies near 700 MeV/u at GSI Darmstadt. The hydrogen-filled ionization chamber IKAR served simultaneously as a gas target and a detector for the recoil protons. The projectile scattering angles were measured with multi-wire tracking detectors. The radial nuclear matter density distributions and the root-mean-square nuclear matter radii were deduced from the measured cross sections using the Glauber multiple-scattering theory. A possible neutron halo structure in $^{15}$C, $^{16}$C and $^{17}$C is discussed. The obtained data show evidence for a halo structure in the $^{15}$C nucleus.
162 - Y. D. Liu , H. W. Wang , Y. G. Ma 2015
The elastic resonance scattering protons decayed from $^{11}$B to the ground state of $^{10}$Be were measured using the thick-target technique in inverse kinematics at the Heavy Ion Research Facility in Lanzhou (HIRFL). The obtained excitation functions were well described by a multichannel R-matrix procedure under the kinematics process assumption of resonant elastic scattering. The excitation energy of the resonant states ranges from 13.0 to 17.0 MeV, and their resonant parameters such as the resonant energy E$_{x}$, the spin-parity J$^pi$, and the proton-decay partial width $Gamma_p$ were determined from R-matrix fits to the data. Two of these states around E$_{x}$ = 14.55 MeV [J$^pi$ = (3/2$^+$, 5/2$^+$), $Gamma_p$ = 475 $pm$ 80 keV] and E$_{x}$ = 14.74 MeV [J$^pi$ = 3/2$^-$, $Gamma_p$ = 830 $pm$ 145 keV], and a probably populated state at E$_x$ = 16.18 MeV [J$^pi$ =(1/2$^-$, 3/2$^-$), $Gamma_p$ $<$ 60 keV], are respectively assigned to the well-known states in $^{11}$B at 14.34 MeV, 15.29 MeV, and 16.43 MeV. The isospin of these three states were previously determined to be T = 3/2, but discrepancies exist in widths and energies due to the current counting statistics and energy resolution. We have compared these states with previous measurements, and the observation of the possibly populated resonance is discussed.
We report the measurements of the transverse ($Px$) and longitudinal ($Pz$) components of the polarization transfer to a bound proton in carbon via the quasi-free $^{12}{rm C}(vec e,evec p)$ reaction, over a wide range of missing momenta. We determine these polarization-transfers separately for protons knocked out from the $s$- and $p$-shells. The electron-beam polarization was measured to determine the individual components with systematic uncertainties which allow a detailed comparison with theoretical calculations.
This paper describes a new multipurpose event generator, ESEPP, which has been developed for the Monte Carlo simulation of unpolarized elastic scattering of charged leptons on protons. The generator takes into account the lowest-order QED radiative corrections to the Rosenbluth cross section including first-order bremsstrahlung without using the soft-photon or ultrarelativistic approximations. ESEPP can be useful for several significant ongoing and planned experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا