Do you want to publish a course? Click here

Dynamical patterns in active nematics on a sphere

162   0   0.0 ( 0 )
 Added by Silke Henkes
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using agent-based simulations of self-propelled particles subject to short-range repulsion and nematic alignment we explore the dynamical phases of a dense active material confined to the surface of a sphere. We map the dynamical phase diagram as a function of curvature, alignment strength and activity and reproduce phases seen in recent experiments on active microtubules moving on the surfaces of vesicles. At low driving, we recover the equilibrium nematic ground state with four +1/2 defects. As the driving is increased, geodesic forces drive the transition to a band of polar matter wrapping around an equator, with large bald spots corresponding to two +1 defects at the poles. Finally, bands fold onto themselves, followed by the system moving into a turbulent state marked by active proliferation of pairs of topological defects. We highlight the role of nematic persistence length and time for pattern formation in these confined systems with finite curvature.



rate research

Read More

Continuum hydrodynamic models of active liquid crystals have been used to describe dynamic self-organising systems such as bacterial swarms and cytoskeletal gels. A key prediction of such models is the existence of self-stabilising kink states that spontaneously generate fluid flow in quasi-one dimensional channels. Using simple stability arguments and numerical calculations we extend previous studies to give a complete characterisation of the phase space for both contractile and extensile particles (ie pullers and pushers) moving in a narrow channel as a function of their flow alignment properties and initial orientation. This gives a framework for unifying many of the results in the literature. We describe the response of the kink states to an imposed shear, and investigate how allowing the system to be polar modifies its dynamical behaviour.
We examine the scaling with activity of the emergent length scales that control the nonequilibrium dynamics of an active nematic liquid crystal, using two popular hydrodynamic models that have been employed in previous studies. In both models we find that the chaotic spatio-temporal dynamics in the regime of fully developed active turbulence is controlled by a single active scale determined by the balance of active and elastic stresses, regardless of whether the active stress is extensile or contractile in nature. The observed scaling of the kinetic energy and enstropy with activity is consistent with our single-length scale argument and simple dimensional analysis. Our results provide a unified understanding of apparent discrepancies in the previous literature and demonstrate that the essential physics is robust to the choice of model.
We study dry, dense active nematics at both particle and continuous levels. Specifically, extending the Boltzmann-Ginzburg-Landau approach, we derive well-behaved hydrodynamic equations from a Vicsek-style model with nematic alignment and pairwise repulsion. An extensive study of the phase diagram shows qualitative agreement between the two levels of description. We find in particular that the dynamics of topological defects strongly depends on parameters and can lead to ``arch solutions forming a globally polar, smectic arrangement of Neel walls. We show how these configurations are at the origin of the defect ordered states reported previously. This work offers a detailed understanding of the theoretical description of dense active nematics directly rooted in their microscopic dynamics.
Active matter comprises individual units that convert energy into mechanical motion. In many examples, such as bacterial systems and biofilament assays, constituent units are elongated and can give rise to local nematic orientational order. Such `active nematics systems have attracted much attention from both theorists and experimentalists. However, despite intense research efforts, data-driven quantitative modeling has not been achieved, a situation mainly due to the lack of systematic experimental data and to the large number of parameters of current models. Here we introduce a new active nematics system made of swarming filamentous bacteria. We simultaneously measure orientation and velocity fields and show that the complex spatiotemporal dynamics of our system can be quantitatively reproduced by a new type of microscopic model for active suspensions whose important parameters are all estimated from comprehensive experimental data. This provides unprecedented access to key effective parameters and mechanisms governing active nematics. Our approach is applicable to different types of dense suspensions and shows a path towards more quantitative active matter research.
We show that a viscoelastic thin sheet driven out of equilibrium by active structural remodelling develops a rich variety of shapes as a result of a competition between viscous relaxation and activity. In the regime where active processes are faster than viscoelastic relaxation, wrinkles that are formed due to remodelling are unable to relax to a configuration that minimises the elastic energy and the sheet is inherently out of equilibrium. We argue that this non-equilibrium regime is of particular interest in biology as it allows the system to access morphologies that are unavailable if restricted to the adiabatic evolution between configurations that minimise the elastic energy alone. Here, we introduce activity using the formalism of evolving target metric and showcase the diversity of wrinkling morphologies arising from out of equilibrium dynamics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا