We use trace class scattering theory to exclude the possibility of absolutely continuous spectrum in a large class of self-adjoint operators with an underlying hierarchical structure and provide applications to certain random hierarchical operators and matrices. We proceed to contrast the localizing effect of the hierarchical structure in the deterministic setting with previous results and conjectures in the random setting. Furthermore, we survey stronger localization statements truly exploiting the disorder for the hierarchical Anderson model and report recent results concerning the spectral statistics of the ultrametric random matrix ensemble.
This paper studies the delocalized regime of an ultrametric random operator whose independent entries have variances decaying in a suitable hierarchical metric on $mathbb{N}$. When the decay-rate of the off-diagonal variances is sufficiently slow, we prove that the spectral measures are uniformly $theta$-H{o}lder continuous for all $theta in (0,1)$. In finite volumes, we prove that the corresponding ultrametric random matrices have completely extended eigenfunctions and that the local eigenvalue statistics converge in the Wigner-Dyson-Mehta universality class.
The present paper is devoted to new, improved bounds for the eigenfunctions of random operators in the localized regime. We prove that, in the localized regime with good probability, each eigenfunction is exponentially decaying outside a ball of a certain radius, which we call the localization onset length. For $ell>0$ large, we count the number of eigenfunctions having onset length larger than $ell$ and find it to be smaller than $exp(-Cell)$ times the total number of eigenfunctions in the system. Thus, most eigenfunctions localize on finite size balls independent of the system size.
The asymptotic expansion of the heat-kernel for small values of its argument has been studied in many different cases and has been applied to 1-loop calculations in Quantum Field Theory. In this thesis we consider this asymptotic behavior for certain singular differential operators which can be related to quantum fields on manifolds with conical singularities. Our main result is that, due to the existence of this singularity and of infinitely many boundary conditions of physical relevance related to the admissible behavior of the fields on the singular point, the heat-kernel has an unusual asymptotic expansion. We describe examples where the heat-kernel admits an asymptotic expansion in powers of its argument whose exponents depend on external parameters. As far as we know, this kind of asymptotics had not been found and therefore its physical consequences are still unexplored.
We apply Feshbach-Krein-Schur renormalization techniques in the hierarchical Anderson model to establish a criterion on the single-site distribution which ensures exponential dynamical localization as well as positive inverse participation ratios and Poisson statistics of eigenvalues. Our criterion applies to all cases of exponentially decaying hierarchical hopping strengths and holds even for spectral dimension $d > 2$, which corresponds to the regime of transience of the underlying hierarchical random walk. This challenges recent numerical findings that the spectral dimension is significant as far as the Anderson transition is concerned.
A new characterization of the singular packing subspaces of general bounded self-adjoint operators is presented, which is used to show that the set of operators whose spectral measures have upper packing dimension equal to one is a $G_delta$ (in suitable metric spaces). As an application, it is proven that, generically (in space of continuous sampling functions), spectral measures of the limit-periodic Schrodinger operators have upper packing dimensions equal to one. Consequently, in a generic set, these operators are quasiballistic.