The Laplace Transform of the Second Moment in the Gauss Circle Problem


Abstract in English

The Gauss circle problem concerns the difference $P_2(n)$ between the area of a circle of radius $sqrt{n}$ and the number of lattice points it contains. In this paper, we study the Dirichlet series with coefficients $P_2(n)^2$, and prove that this series has meromorphic continuation to $mathbb{C}$. Using this series, we prove that the Laplace transform of $P_2(n)^2$ satisfies $int_0^infty P_2(t)^2 e^{-t/X} , dt = C X^{3/2} -X + O(X^{1/2+epsilon})$, which gives a power-savings improvement to a previous result of Ivic [Ivic1996]. Similarly, we study the meromorphic continuation of the Dirichlet series associated to the correlations $r_2(n+h)r_2(n)$, where $h$ is fixed and $r_2(n)$ denotes the number of representations of $n$ as a sum of two squares. We use this Dirichlet series to prove asymptotics for $sum_{n geq 1} r_2(n+h)r_2(n) e^{-n/X}$, and to provide an additional evaluation of the leading coefficient in the asymptotic for $sum_{n leq X} r_2(n+h)r_2(n)$.

Download