Do you want to publish a course? Click here

Valley polarized relaxation and upconversion luminescence from Tamm-Plasmon Trion-Polaritons with a MoSe2 monolayer

275   0   0.0 ( 0 )
 Added by Christian Schneider
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Transition metal dichalcogenides represent an ideal testbed to study excitonic effects, spin-related phenomena and fundamental light-matter coupling in nanoscopic condensed matter systems. In particular, the valley degree of freedom, which is unique to such direct band gap monolayers with broken inversion symmetry, adds fundamental interest in these materials. Here, we implement a Tamm-plasmon structure with an embedded MoSe2 monolayer and study the formation of polaritonic quasi-particles. Strong coupling conditions between the Tamm-mode and the trion resonance of MoSe2 are established, yielding bright luminescence from the polaritonic ground state under non-resonant optical excitation. We demonstrate, that tailoring the electrodynamic environment of the monolayer results in a significantly increased valley polarization. This enhancement can be related to change in recombination dynamics shown in time-resolved photoluminescence measurements. We furthermore observe strong upconversion luminescence from resonantly excited polariton states in the lower polariton branch. This upconverted polariton luminescence is shown to preserve the valley polarization of the trion-polariton, which paves the way towards combining spin-valley physics and exciton scattering experiments.



rate research

Read More

Strong light matter coupling between excitons and microcavity photons, as described in the framework of cavity quantum electrodynamics, leads to the hybridization of light and matter excitations. The regime of collective strong coupling arises, when various excitations from different host media are strongly coupled to the same optical resonance. This leads to a well-controllable admixture of various matter components in three hybrid polariton modes. Here, we study a cavity device with four embedded GaAs quantum wells hosting excitons that are spectrally matched to the A-valley exciton resonance of a MoSe2 monolayer. The formation of hybrid polariton modes is evidenced in momentum resolved photoluminescence and reflectivity studies. We describe the energy and k-vector distribution of exciton-polaritons along the hybrid modes by a thermodynamic model, which yields a very good agreement with the experiment.
Atomically thin crystals of transition metal dichalcogenides are ideally suited to study the interplay of light-matter coupling, polarization and magnetic field effects. In this work, we investiagte the formation of exciton-polaritons in a MoSe2 monolayer, which is integrated in a fully-grown, monolithic microcavity. Due to the narrow linewidth of the polaritonic resonances, we are able to directly investigate the emerging valley Zeeman splitting of the hybrid light-matter resonances in the presence of a magnetic field. At a detuning of -54.5 meV (13.5 % matter constituent of the lower polariton branch), we find a Zeeman splitting of the lower polariton branch of 0.36 meV, which can be directly associated with an excitonic g factor of 3.94pm0.13. Remarkably, we find that a magnetic field of 6T is sufficient to induce a notable valley polarization of 15 % in our polariton system, which approaches 30% at 9T. Strikingly, this circular polarization degree of the polariton (ground) state exceeds the polarization of the exciton reservoir for equal magnetic field magnitudes by approximately 50%, as a consequence of enhanced relaxation of bosons in our monolayer-based system.
Highly nonlinear optical materials with strong effective photon-photon interactions (Kerr-like nonlinearity) are required in the development of novel quantum sources of light as well as for ultrafast and quantum optical signal processing circuitry. Here we report very large Kerr-like nonlinearities by employing strong optical transitions of charged excitons (trions) observed in semiconducting transition metal dichalcogenides (TMDCs). By hybridising trions in monolayer MoSe$_2$ at low electron densities with a microcavity mode, we realise trion-polaritons exhibiting significant energy shifts at very small photon fluxes due to phase space filling. Most notably, the strong trion-polariton nonlinearity is found to be 10 to 1000 larger than in other polariton systems, including neutral exciton-polaritons in TMDCs. Furthermore it exceeds by factors of $sim 10^3-10^5$ the magnitude of Kerr nonlinearity in bare TMDCs, graphene and other widely used optical materials (e.g. Si, AlGaAs etc) in weak light-matter coupling regimes. The results are in good agreement with a theory which accounts for the composite nature of excitons and trions and deviation of their statistics from that of ideal bosons and fermions. This work opens a new highly nonlinear system for quantum optics applications enabling in principle scalability and control through nano-engineering of van der Waals heterostructures.
The emerging field of valleytronics aims to exploit the valley pseudospin of electrons residing near Bloch band extrema as an information carrier. Recent experiments demonstrating optical generation and manipulation of exciton valley coherence (the superposition of electron-hole pairs at opposite valleys) in monolayer transition metal dichalcogenides (TMDs) provide a critical step towards control of this quantum degree of freedom. The charged exciton (trion) in TMDs is an intriguing alternative to the neutral exciton for control of valley pseudospin because of its long spontaneous recombination lifetime, its robust valley polarization, and its coupling to residual electronic spin. Trion valley coherence has however been unexplored due to experimental challenges in accessing it spectroscopically. In this work, we employ ultrafast two-dimensional coherent spectroscopy to resonantly generate and detect trion valley coherence in monolayer MoSe$_2$ demonstrating that it persists for a few-hundred femtoseconds. We conclude that the underlying mechanisms limiting trion valley coherence are fundamentally different from those applicable to exciton valley coherence. Based on these observations, we suggest possible strategies for extending valley coherence times in two-dimensional materials.
318 - B. Han , C. Robert , E. Courtade 2018
Transitions metal dichalcogenides (TMDs) are direct semiconductors in the atomic monolayer (ML) limit with fascinating optical and spin-valley properties. The strong optical absorption of up to 20 % for a single ML is governed by excitons, electron-hole pairs bound by Coulomb attraction. Excited exciton states in MoSe$_2$ and MoTe$_2$ monolayers have so far been elusive due to their low oscillator strength and strong inhomogeneous broadening. Here we show that encapsulation in hexagonal boron nitride results in emission line width of the A:1$s$ exciton below 1.5 meV and 3 meV in our MoSe$_2$ and MoTe$_2$ monolayer samples, respectively. This allows us to investigate the excited exciton states by photoluminescence upconversion spectroscopy for both monolayer materials. The excitation laser is tuned into resonance with the A:1$s$ transition and we observe emission of excited exciton states up to 200 meV above the laser energy. We demonstrate bias control of the efficiency of this non-linear optical process. At the origin of upconversion our model calculations suggest an exciton-exciton (Auger) scattering mechanism specific to TMD MLs involving an excited conduction band thus generating high energy excitons with small wave-vectors. The optical transitions are further investigated by white light reflectivity, photoluminescence excitation and resonant Raman scattering confirming their origin as excited excitonic states in monolayer thin semiconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا