Do you want to publish a course? Click here

Fitting phase--type scale mixtures to heavy--tailed data and distributions

60   0   0.0 ( 0 )
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We consider the fitting of heavy tailed data and distribution with a special attention to distributions with a non--standard shape in the body of the distribution. To this end we consider a dense class of heavy tailed distributions introduced recently, employing an EM algorithm for the the maximum likelihood estimates of its parameters. We present methods for fitting to observed data, histograms, censored data, as well as to theoretical distributions. Numerical examples are provided with simulated data and a benchmark reinsurance dataset. We empirically demonstrate that our model can provide excellent fits to heavy--tailed data/distributions with minimal assumptions



rate research

Read More

We propose and analyze a new estimator of the covariance matrix that admits strong theoretical guarantees under weak assumptions on the underlying distribution, such as existence of moments of only low order. While estimation of covariance matrices corresponding to sub-Gaussian distributions is well-understood, much less in known in the case of heavy-tailed data. As K. Balasubramanian and M. Yuan write, data from real-world experiments oftentimes tend to be corrupted with outliers and/or exhibit heavy tails. In such cases, it is not clear that those covariance matrix estimators .. remain optimal and ..what are the other possible strategies to deal with heavy tailed distributions warrant further studies. We make a step towards answering this question and prove tight deviation inequalities for the proposed estimator that depend only on the parameters controlling the intrinsic dimension associated to the covariance matrix (as opposed to the dimension of the ambient space); in particular, our results are applicable in the case of high-dimensional observations.
Gini-type correlation coefficients have become increasingly important in a variety of research areas, including economics, insurance and finance, where modelling with heavy-tailed distributions is of pivotal importance. In such situations, naturally, the classical Pearson correlation coefficient is of little use. On the other hand, it has been observed that when light-tailed situations are of interest, and hence when both the Gini-type and Pearson correlation coefficients are well-defined and finite, then these coefficients are related and sometimes even coincide. In general, understanding how the correlation coefficients above are related has been an illusive task. In this paper we put forward arguments that establish such a connection via certain regression-type equations. This, in turn, allows us to introduce a Gini-type Weighted Insurance Pricing Model that works in heavy-tailed situation and thus provides a natural alternative to the classical Capital Asset Pricing Model. We illustrate our theoretical considerations using several bivariate distributions, such as elliptical and those with heavy-tailed Pareto margins.
173 - Xueying Tang , Ke Li , Malay Ghosh 2015
This paper considers Bayesian multiple testing under sparsity for polynomial-tailed distributions satisfying a monotone likelihood ratio property. Included in this class of distributions are the Students t, the Pareto, and many other distributions. We prove some general asymptotic optimality results under fixed and random thresholding. As examples of these general results, we establish the Bayesian asymptotic optimality of several multiple testing procedures in the literature for appropriately chosen false discovery rate levels. We also show by simulation that the Benjamini-Hochberg procedure with a false discovery rate level different from the asymptotically optimal one can lead to high Bayes risk.
136 - Qiyang Han , Jon A. Wellner 2017
We study the performance of the Least Squares Estimator (LSE) in a general nonparametric regression model, when the errors are independent of the covariates but may only have a $p$-th moment ($pgeq 1$). In such a heavy-tailed regression setting, we show that if the model satisfies a standard `entropy condition with exponent $alpha in (0,2)$, then the $L_2$ loss of the LSE converges at a rate begin{align*} mathcal{O}_{mathbf{P}}big(n^{-frac{1}{2+alpha}} vee n^{-frac{1}{2}+frac{1}{2p}}big). end{align*} Such a rate cannot be improved under the entropy condition alone. This rate quantifies both some positive and negative aspects of the LSE in a heavy-tailed regression setting. On the positive side, as long as the errors have $pgeq 1+2/alpha$ moments, the $L_2$ loss of the LSE converges at the same rate as if the errors are Gaussian. On the negative side, if $p<1+2/alpha$, there are (many) hard models at any entropy level $alpha$ for which the $L_2$ loss of the LSE converges at a strictly slower rate than other robust estimators. The validity of the above rate relies crucially on the independence of the covariates and the errors. In fact, the $L_2$ loss of the LSE can converge arbitrarily slowly when the independence fails. The key technical ingredient is a new multiplier inequality that gives sharp bounds for the `multiplier empirical process associated with the LSE. We further give an application to the sparse linear regression model with heavy-tailed covariates and errors to demonstrate the scope of this new inequality.
75 - Claire Lacour 2021
We consider X 1 ,. .. , X n a sample of data on the circle S 1 , whose distribution is a twocomponent mixture. Denoting R and Q two rotations on S 1 , the density of the X i s is assumed to be g(x) = pf (R --1 x) + (1 -- p)f (Q --1 x), where p $in$ (0, 1) and f is an unknown density on the circle. In this paper we estimate both the parametric part $theta$ = (p, R, Q) and the nonparametric part f. The specific problems of identifiability on the circle are studied. A consistent estimator of $theta$ is introduced and its asymptotic normality is proved. We propose a Fourier-based estimator of f with a penalized criterion to choose the resolution level. We show that our adaptive estimator is optimal from the oracle and minimax points of view when the density belongs to a Sobolev ball. Our method is illustrated by numerical simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا