Do you want to publish a course? Click here

Progenitor Model of SN 1987A Based on the Slow Merger Scenario

83   0   0.0 ( 0 )
 Added by Koh Takahashi
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Even after elaborate investigations for 30 years, we still do not know well how the progenitor of SN 1987A has evolved. To explain unusual red-to-blue evolution, previous studies suggest that in a red giant stage either the increase of surface He abundance or the envelope mass was necessary. It is usually supposed that the He enhancement is caused by the rotational mixing, and the mass increase is by a binary merger. Thus, we have investigated these scenarios thoroughly. The obtained findings are that rotating single star models do not satisfy all the observational constraints and that the enhancement of envelope mass alone does not explain observations. Here, we consider a slow merger scenario in which both the He abundance and the envelope mass enhancements are expected to occur. We indeed show that most observational constraints such as the red-to-blue evolution, lifetime, total mass, position in the HR diagram at collapse, and the chemical anomalies are well reproduced by the merger model of 14 and 9 M$_{odot}$ stars. We also discuss the effects of the added envelope spin in the merger scenarios.



rate research

Read More

Based on the work of Menon & Heger (2017), we present the bolometric light curvesand spectra of the explosions of blue supergiant progenitors from binary mergers. We study SN 1987A and two other peculiar Type IIP supernovae: SN 1998A and SN 2006V. The progenitor models were produced using the stellar evolution code Keplerand then exploded using the 1D radiation hydrodynamic code Crab. The explosions of binary merger models exhibit an overall better fit to the light curve of SN 1987A than previous single star models, because of their lower helium-core masses, larger envelope masses, and smaller radii. The merger model that best matches the observational constraints of the progenitor of SN 1987A and the light curve is a model with a radius of 37 solar radii, an ejecta mass of 20.6 solar masses, an explosion energy of 1.7 Bethe, a nickel mass of 0.073 solar masses, and a nickel mixing velocity of 3,000 km/s. This model also works for SN 1998A and is comparable with earlier estimates from semi-analytic models. In the case of SN 2006V, however, a model with a radius of 150 solar radii and ejecta mass of 19.1 solar masses matches the light curve. These parameters are significantly higher than predictions from semi-analytic models for the progenitor of this supernova.
We revisit the evidence for the contribution of the long-lived radioactive nuclides 44Ti, 55Fe, 56Co, 57Co, and 60Co to the UVOIR light curve of SN 1987A. We show that the V-band luminosity constitutes a roughly constant fraction of the bolometric luminosity between 900 and 1900 days, and we obtain an approximate bolometric light curve out to 4334 days by scaling the late time V-band data by a constant factor where no bolometric light curve data is available. Considering the five most relevant decay chains starting at 44Ti, 55Co, 56Ni, 57Ni, and 60Co, we perform a least squares fit to the constructed composite bolometric light curve. For the nickel isotopes, we obtain best fit values of M(56Ni) = (7.1 +- 0.3) x 10^{-2} Msun and M(57Ni) = (4.1 +- 1.8) x 10^{-3} Msun. Our best fit 44Ti mass is M(44Ti) = (0.55 +- 0.17) x 10^{-4} Msun, which is in disagreement with the much higher (3.1 +- 0.8) x 10^{-4} Msun recently derived from INTEGRAL observations. The associated uncertainties far exceed the best fit values for 55Co and 60Co and, as a result, we only give upper limits on the production masses of M(55Co) < 7.2 x 10^{-3} Msun and M(60Co) < 1.7 x 10^{-4} Msun. Furthermore, we find that the leptonic channels in the decay of 57Co (internal conversion and Auger electrons) are a significant contribution and constitute up to 15.5% of the total luminosity. Consideration of the kinetic energy of these electrons is essential in lowering our best fit nickel isotope production ratio to [57Ni/56Ni]=2.5+-1.1, which is still somewhat high but is in agreement with gamma-ray observations and model predictions.
125 - S. Orlando , M. Ono , S. Nagataki 2019
(Abridged) We aim at linking the dynamical and radiative properties of the remnant of SN 1987A to the geometrical and physical characteristics of the parent aspherical SN explosion and to the internal structure of its progenitor star. We performed 3D hydrodynamic simulations which describe the long-term evolution of SN 1987A from the onset of the SN to the full-fledged remnant at the age of 50 years, accounting for the pre-SN structure of the progenitor star. The simulations include all physical processes relevant for the complex phases of SN evolution and for the interaction of the SNR with the highly inhomogeneous ambient environment around SN 1987A. From the simulations, we synthesize observables to be compared with observations. By comparing the model results with observations, we constrained the initial SN anisotropy causing Doppler shifts observed in emission lines of heavy elements from ejecta, and leading to the remnant evolution observed in the X-ray band in the last 30 years. In particular, we found that the high mixing of ejecta unveiled by high redshifts and broadenings of [FeII] and $^{44}$Ti lines require a highly asymmetric SN explosion channeling a significant fraction of energy along an axis almost lying in the plane of the central equatorial ring around SN 1987A, roughly along the line-of-sight but with an offset of 40 deg, with the lobe propagating away from the observer slightly more energetic than the other. We found unambiguously that the observed distribution of ejecta and the dynamical and radiative properties of the SNR can be best reproduced if the structure of the progenitor star was that of a blue supergiant resulted from the merging of two massive stars.
The Galactic blue supergiant SBW1 with its circumstellar ring nebula represents the best known analog of the progenitor of SN 1987A. High-resolution imaging has shown H-alpha and IR structures arising in an ionized flow that partly fills the rings interior. To constrain the influence of the stellar wind on this structure, we obtained an ultraviolet (UV) spectrum of the central star of SBW1 with the HST Cosmic Origins Spectrograph (COS). The UV spectrum shows none of the typical wind signatures, indicating a very low mass-loss rate. Radiative transfer models suggest an extremely low rate below 10$^{-10}$ Msun/yr, although we find that cooling timescales probably become comparable to or longer than the flow time below 10$^{-8}$ Msun/yr. We therefore adopt this latter value as a conservative upper limit. For the central star, the model yields $T_{rm eff}$=21,000$pm$1000 K, $Lsimeq$5$times$10$^4$ $L_{odot}$, and roughly Solar composition except for enhanced N abundance. SBW1s very low mass-loss rate may hinder the winds ability to shape the surrounding nebula. The very low mass-loss rate also impairs the winds ability to shed angular momentum; the spin-down timescale for magnetic breaking is more than 500 times longer than the age of the ring. This, combined with the stars slow rotation rate, constrain merger scenarios to form ring nebulae. The mass-loss rate is at least 10 times lower than expected from mass-loss recipes, without any account of clumping. The physical explanation for why SBW1s wind is so weak presents an interesting mystery.
Photometric and spectroscopic analyses of the intermediate-luminosity Type Ib supernova (SN) 2015ap and of the heavily reddened Type Ib SN~2016bau are discussed. Photometric properties of the two SNe, such as colour evolution, bolometric luminosity, photospheric radius, temperature, and velocity evolution, are also constrained. The ejecta mass, synthesised nickel mass, and kinetic energy of the ejecta are calculated from their light-curve analysis. We also model and compare the spectra of SN~2015ap and SN~2016bau at various stages of their evolution. The P~Cygni profiles of various lines present in the spectra are used to determine the velocity evolution of the ejecta. To account for the observed photometric and spectroscopic properties of the two SNe, we have computed 12,$M_odot$ zero-age main sequence (ZAMS) star models and evolved them until the onset of core collapse using the publicly available stellar-evolution code {tt MESA}. Synthetic explosions were produced using the public version of {tt STELLA} and another publicly available code, {tt SNEC}, utilising the {tt MESA} models. {tt SNEC} and {tt STELLA} provide various observable properties such as the bolometric luminosity and velocity evolution. The parameters produced by {tt SNEC}/{tt STELLA} and our observations show close agreement with each other, thus supporting a 12,$M_odot$ ZAMS star as the possible progenitor for SN~2015ap, while the progenitor of SN~2016bau is slightly less massive, being close to the boundary between SN and non-SN as the final product.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا